il
UNIVERSITI PUTRA MALAYSIA

HYBRIDFLOOD ALGORITHMS MINIMIZING REDUNDANT
MESSAGES AND MAXIMIZING EFFICIENCY OF SEARCH IN
UNSTRUCTURED P2P NETWORKS

HASSAN BARJINI

FSKTM 2012 12




HYBRIDFLOOD ALGORITHMS MINIMIZING
REDUNDANT MESSAGES AND MAXIMIZING
EFFICIENCY OF SEARCH IN
UNSTRUCTURED P2P NETWORKS

HASSAN BARJINI

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2012



HYBRIDFLOOD ALGORITHMS MINIMIZING
REDUNDANT MESSAGES AND MAXIMIZING
EFFICIENCY OF SEARCH IN UNSTRUCTURED
P2P NETWORKS

HASSAN BARJINI

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirements for the Degree of Doctor
of Philosophy

July 2012



DEDICATIONS

To My dear wife for her encouragement,

and My sweet daughters



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfillment of the requirement for the degree of Doctor of Philosophy

HYBRIDFLOOD ALGORITHMS MINIMIZING REDUNDANT
MESSAGES AND MAXIMIZING EFFICIENCY OF SEARCH IN
UNSTRUCTURED P2P NETWORKS

By
HASSAN BARJINI

July 2012

Chairman: Professor Mohamed Othman, PhD

Faculty: Computer Science and Information Technology

Unstructured peer-to-peer (P2P) networks, aggregate the slack resources on each
peer, which may include bandwidth, storage space, and computing power. As a
peer joins this P2P network, the total demand and total capacity of the system
simultaneously increase. However, in a typical client-server network, as a client
joins the network it only shares its demands, not its resources. Thus as more clients
join the client-server network fewer resources are available to serve each client.
Besides, the decentralized structure of a P2P network increases its robustness
because it removes the single point of failure that can be inherent in a client-server
based system.

Therefore the unstructured model of the P2P network has attracted the greatest
attention from both users and the researcher communities. Searching is an essential
and basic activity for all P2P applications. Thus, there are a large number of
research works have focused on unstructured P2P search facilities. There are two

main reasons driving the research interest in this area.
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First, the upward trend of digital information production, such as HTML, music
and image files, requires a scalable information infrastructure that is capable of
indexing and searching. Recent studies have shown that more than 97% of infor-
mation produced worldwide is in a digital form. The amount of digital information
is expected to grow exponentially. There are many challenges posed by such a huge
amount of information for existing search systems.

Second, compared to traditional centralized networks, unstructured P2P networks
are particularly attractive and promising due to their scalability, availability, low
cost, easy deployment, and data freshness. Meanwhile the fundamental property
of existing and scalable unstructured P2P networks is the high heterogeneity of the
peers that participate in the network. The heterogeneity of peers in unstructured
P2Ps introduces both challenges and opportunities when designing a P2P network.
Flooding is a basic file search procedure in unstructured P2P file-sharing systems.
In flooding a peer initiates the file search operation by broadcasting a query to
its neighbors, who continue to propagate it to their neighbors. Flooding has no
knowledge about network topology nor files or resources distribution, so it offers
an attractive method for file discovery in dynamic and developing networks. In
the meantime, flooding produces exponentially redundant messages at each hop.
Consequently, the growth of redundant messages limits the system’s scalability
and causes unnecessary traffic in networks.

In this thesis, we combine two search techniques to tackle this issue and improve
P2P search performance in terms of search efficiency and the quality of the search
results. We proposed two novel search algorithms named QuickFlood and Hy-
bridFlood. QuickFlood combines two flood-based searches; flooding and teeming.
QuickFlood is performed in two steps, in a first step the algorithm performs flood-
ing in a limited number of hops. In the second step the algorithm follows a teeming

search. QuickFlood compared with blocking expanding ring search decreased re-
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dundant messages by 70%, increased two-time success rate and decreased latency
by 30%. Therefore, the algorithm enhanced unstructured P2P search by increasing
scalability, efficiency and reliability of search.

HybridFlood is also performed in two steps. The first step performs flooding with
a limited number of hops. In the second step, nosey nodes are selected in each
searching horizon. The nosey nodes are nodes which have the most links to other
nodes. These nodes maintain the data index of all client nodes. HybridFlood in
comparison to the blocking expanding ring search decreased redundant messages
by 80%, increased the success rate by 2.5, and decreased of latency by 80%. In the
other word the algorithm improved unstructured P2P search’s scalability, efficiency
and reliability.

We provided analytical studies for flooding, QuickFlood and HybridFlood. The
analytical results provided the best hop threshold point for the optimum growth
rate coverage and redundant messages from the three systems. It also proved that
in HybridFlood, broadcasting messages are reduced by at least an order of mag-
nitude. Thus, the proposed algorithms enhance the performance of the search by
reducing redundant messages, increasing the success rate and decreasing latency.

The simulation experiments validated the analytical results.

v
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Rangkaian tidak berstruktur rakan-kepada-rakan (P2P), mengumpulkan sumber-
sumber yang bekerja perlahan pada setiap rakan, yang mungkin merangkumi
jalur lebar, ruang simpanan, dan kuasa pengkomputan. Apabila rakan meny-
ertai rangkaian P2P ini, jumlah permintaan dan jumlah kapasiti sistem meningkat
secara serentak. Walau bagaimanapun, dalam rangkaian pelanggan-pelayan biasa,
apabila pelanggan menyertai rangkaian ia hanya berkongsi permintaan, bukan
sumber. Jadi apabila lebih banyak pelanggan menyertai rangkaian pelanggan-
pelayan kurang sumber-sumber yang ada untuk melayani setiap pelanggan. Selain
itu, struktur tidak berpusat rangkaian P2P meningkatkan keteguhannya kerana
ia membuang titik tunggal kegagalan yang boleh wujud dalam sistem berasaskan
pelanggan-pelayan.

Oleh itu, model tidak berstruktur rangkaian P2P telah menarik perhatian yang

paling besar daripada kedua-dua pengguna dan komuniti penyelidik. Carian meru-
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pakan aktiviti asas dan penting untuk semua aplikasi P2P. Oleh itu, terdapat se-
bilangan besar kerja-kerja penyelidikan tertumpu kepada kemudahan carian tidak
berstruktur P2P. Terdapat dua sebab utama yang menggalakkan minat penye-
lidikan dalam bidang ini.

Pertama, aliran menaik penghasilan maklumat digital, seperti HT'M fail-fail muzik
dan imej, memerlukan infrastruktur maklumat berskala yang mampu mengindeks
dan mencari. Kajian terkini menunjukkan bahawa lebih daripada 97% maklumat
yang dihasilkan di selaruh dunia cdalah dalam bentuk digital. Bilangan maklumat
digital dijangkakan akan bertambah secara eksponen. Terdapat bangak cabaran
ditimbulkan oleh maklumat sebegitu banyak bagi sistem carian yang sedia ada.
Kedua, daripada maklumat yang dihasilkan di seluruh dunia adalah dalam bentuk
digital. Jumlah maklumat digital dijangka berkembang dengan pesat. Terda-
pat banyak cabaran yang ditimbulkan seperti jumlah maklumat yang besar untuk
sistem carian yang sedia ada. Kedua, dibandingkan dengan rangkaian berpusat
tradisional, rangkaian P2P tidak berstruktur khususnya menarik dan menjan-
jikan kebolehskalaan, ketersediaan, kos rendah, penggunaan mudah, dan kesegaran
data. Sementara itu, perkara asas rangkaian tidak berstruktur dan berskala P2P
yang sedia ada adalah kepelbagaian yang tinggi daripada rakan-rakan sebaya yang
mengambil bahagian dalam rangkaian. Kepelbagaian rakan-rakan dalam P2P
tidak berstruktur mendedahkan kedua-dua cabaran dan peluang-peluang apabila
mereka mereka bentuk bentuk satu rangkaian P2P.

Pembanjiran adalah prosedur asas carian fail dalam sistem perkongsian fail P2P
yang tidak berstruktur. Dalam pembanjiran rakan sebaya memulakan operasi
fail carian dengan menyebarkan permintaan kepada jiran-jiran, yang terus menye-
barkan kepada jiran-jiran mereka yang lain. Pembanjiran tidak mempunyai penge-
tahuan mengenai topologi rangkaian mahu pun fail atau pengagihan sumber, jadi

ia menawarkan satu kaedah yang menarik untuk penemuan fail dalam rangkaian
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yang dinamik dan membangun. Sementara itu, pembanjiran menghasilkan mesej-
mesej lewah di setiap loncatan masing-masing. Akibatnya, pertambahan mesej
berlebihan menghadkan kebolehskalaan sistem dan menyebabkan lalu lintas yang
tidak perlu dalam rangkaian.

Dalam tesis ini, kami menggabungkan dua teknik carian untuk menangani isu
ini dan meningkatkan prestasi carian P2P dari segi kecekapan carian dan kualiti
hasil carian. Kami mencadangkan dua algorithma carian baharu yang dinamakan
QuickFlood dan HybridFlood. QuickFlood menggabungkan dua carian berasaskan
pembanjiran; pembanjiran dan penuh sesak. QuickFlood dilaksanakan dalam dua
langkah: dalam langkah pertama algorithma ini melaksanakan pembanjiran di
beberapa loncatan terhad. Dalam langkah kedua prosedur pengiraan mengikut
satu carian penuh sesak. QuickFlood dibandingkan dengan carian cincin sekatan
berkembang mangurangkan mesej lewah sebanyak 70%, meningkat kan kadar ke-
jayaan dua-kali dan pendaman menurun kan sebanyak 30%. Oleh itu, prosedur
pengiraan dipertingkatkan carian P2P tidak berstruktur dengan meningkatkan ke-
bolehan untuk diskala, kecekapan dan kebolehpercayaan carian.

HybridFlood juga dilaksanakan dalam dua langkah. Langkah pertama melak-
sanakan pembanjiran dengan bilangan loncatan yang terhad. Pada langkah kedua,
nod-nod yang ingin tahu dipilih dalam setiap lapisan carian. Nod-nod ingin tahu
adalah nod yang mempunyai pautan kepada nod-nod lain. Nod ini mengekalkan
indeks data semua nod pelanggan. HybridFlood, jika dibandingkan dencan carian
cincin sekatan berkembang menurunkan mesej lewah sebanyak 80%, meningkatkan
kadar kejayaan sebanyak 2.5, dan menurunkan pendaman sebanyah 80%. Dengan
kata lain, algorithma ini meningkatkan kebolehskalaan, kecekapan dan keboleh-
percayaan carian tidak berstruktur P2P.

Kami menyediakan kajian analisis untuk pembanjiran, QuickFlood dan Hybrid-

Flood. Keputusan analisis memberikan titik ambang loncatan yang terbaik untuk
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pertumbuhan kadar liputan yang optima dan mesej lewah dari ketiga-tiga sis-
tem. Ia juga membuktikan bahawa dalam HybridFlood, penyebaran mesej dapat
dikurangkan sekurang-kurangnya satu tertib magnitud. Oleh itu, algoritma yang
dicadangkan meningkatkan prestasi carian dengan mengurangkan mesej lewah,
meningkatkan kadar kejayaan dan mengurangkan pendaman. Eksperimen simu-

lasi mengesahkan keputusan analisis.
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CHAPTER 1
INTRODUCTION

1.1 Background

The peer-to-peer (P2P) system is the best-known application in the area of dis-
tributed computing. It consists of interconnected nodes that can self-organize
themselves without requiring intermediation or a centralized server or author-
ity [1]. The main goal in a P2P system is to tie together and combine small
resources, such as storage, bandwidth, and CPU, from each node. The system
then constructs a large-scale distributed application, instant messaging, Internet
telephony, distributed database system, and content distribution.

P2P systems have therefore become extremely popular, and resulted in an attrac-
tive application for millions of users around the world. Thus, the major portion
of Internet traffic belongs to P2P applications. For example, Napster, with about
50 million users around the world, appears to be one of the most famous music

stores on the web [2|. Figure 1.1 presented P2P applications.

1.2 P2P Search Architecture

A P2P system from a search perspective is classified as: structured, unstructured

and hybrid [3]. Figure 1.2 presents peer-to-peer searching architecture.

1.2.1 P2P Structured

This type of architecture, like CAN [4] and Chord |5], has a tightly defined over-
lay topology, which assigns a unique search path to any lookup request. In other
words, they have a close connection between the P2P topology and location of the
data, which commonly makes use of Distributed Hash Tables (DHTs [6]). In this

architecture, no servers are used, and resources are distributed evenly between
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Figure 1.1: P2P applications

all participating nodes in a predefined manner. Thus, when peer looks up cer-
tain information, it uses distributed indexes or (DHTS) to find the information’s
storage place. Although its search overhead is small, the maintenance overhead is
huge especially for highly dynamic system [7]|. Structured P2P networks are more

suitable for static environments [8] than for dynamic, evolving P2P networks.

1.2.2 P2P Unstructured

The unstructured P2P system has no central directory or any precise control over
the network topology. The advantage of eliminating the server is that it provides
freedom for the participating peers to swap information between each other. The
designs of unstructured P2P are extremely resilient to nodes entering and leaving
the system. Unstructured systems can be further classified into centralized and

decentralized ones.
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Figure 1.2: P2P search architecture

P2P Centralized Unstructured

Centralized unstructured P2P networks follow the classical client-server architec-
ture. In general, servers store information about resources that other peers provide.
The central servers use keep-alive messages to check the state of each node in the
network and keep the document indexes up-to-date [9]. A well-known type of this
network is Napster. In Napster, when a peer wants to find a certain resource it
sends a query to the server (often called a directory) that returns a search result.
The centralized unstructured network has the fastest search mechanism, but it has
a single point of failure and is vulnerable to Denial of Service (DoS) attacks.
P2P Decentralized Unstructured

In this type of P2P network there is no centralized directory (server) or con-

trol over the network topology. A peer can freely join and leave the network at



any time. Furthermore, it selects its neighbors arbitrarily. Due to the absence
of topological constraints such a system produces a better performance. Decen-
tralized unstructured P2P networks need less maintenance overhead due to their
extremely dynamic condition where peers can join and leave frequently and con-
currently. Thus the unstructured P2P network topology is highly robust to failures

or node transience. Gnutella [10] is an example of such a system.

1.2.3 P2P Hybrid

The hybrid strategy of P2P has two different approaches in the literature. The
first approach proposed is a two-tiered overlay structure which divides peers into
two groups, such as ultrapeers or super-peers and leaf peers or clients. The second
approach simply tries to combine two different architecture types to boost the
overall system performance.

In the first approach, clients are located at the edge of the network. They have no
responsibility for any routing. The leaf nodes are connected to the overlay through
a few super-peers or ultrapeers. The super-peers keep an index of its clients’ data,
in order to process the query for its clients. Thus, whenever a client receives a query
it forwards the query to its associated super-peer. Then that specific super-peer
will process the query on its clients” behalf. If the super-peer locates the answers,
it will return a response message. This response message or query hit message
contains the results and the address of each client whose collection generated the
result. If the super-peer did not find the result, it will forward the query message
to other super-peers. Gnutella 2 [11,12] or KaZaa [3] are both based on these
hybrid architectures.

In the second approach of the hybrid strategy there is no difference between the
peers. Peers in this architecture are acting the same or equally. They are sometime

acting as a server, client or router. The hybrid frameworks here try to combine



the advantages offered by the two different types of algorithm.

1.3 Significant of the Research

A recent report conducted by IDC in 2010 [13] has shown that there is an upward
trend to digital information production. The volume of digital information from
0.8 ZB in 2009 will increase to 35 ZB in 2020. For the first time ever the total
volume of digital content will exceed the entire storage capacity. It is speculated
that by 2011 only half of the digital universe will be stored. This trend towards
the production of information requires a scalable infrastructure capable of indexing
and searching rich content, such as HTML, music and image files [14].

A traditional solution is to construct a centralized searching server, such as that
which all current search engines operate. This kind of solution needs to maintain
an enormous centralized database about all the online information. They require a
large amount of sophisticated hardware and high-performance software to pretend
to be scalable and available. The only advantage of centralized search servers
is that they can provide exact-match queries [15]. However, keyword searches are
more prevalent, and more important than exact-match queries. The disadvantages
of centralized searching servers are that they impose their censorship policy, use
privacy of users, there is no freshness of responding guarantee, and there is the
issue of the threat of a single point of failure.

Therefore, the reasonable solution is to use a scalable, available, low cost, and
easily deployed system. P2P networks are distributed systems consisting of inter-
connected nodes, which provide scalability, fault tolerance, decentralized coordina-
tion, anonymity, and self-organization. It is defined as an overlay network built by
a set of nodes on top of a physical network infrastructure. Its operating protocols
acts as a distributed network, which do not rely on any specific dedicated server

for communication; instead it consists of interconnected nodes. All peers in such



a network are symmetric and corporative: they can act as a client, a server, or
a router [9]. The P2P system is an interesting and promising alternative for the

following reasons.

e Scalability: In a P2P system, maintaining the performance attributes is inde-
pendent of the number of nodes or documents. There is a minimal effect on

performance with a dramatic increase in the number of nodes or documents.

e Availability: Availability requires stability in the presence of failure or changing
of the node population. The self-organization and fault tolerance nature of
the P2P system guarantees its stability and persistence. Authorized users are

ensured access to data and related resources when required.

e Low cost and deployments: A P2P system is practically connected together,
with very low resources in its nodes. It can increment its deployment when any

new node joins the system.

e Data freshness: Once a node appears it can publish its documents immediately.

Thus the freshness of data in P2P systems is guaranteed.

Flooding broadcasts the query message from the source peer to all its immedi-
ate neighbors, who continue to propagate it to their neighbors [16|. Flooding is
the most frequently used [17,18] search scheme in unstructured P2P networks.
Flooding and unstructured P2P networks follow the same natures. Both have no
knowledge about network topology or file distribution. Thus flooding offers an
attractive method for file discovery in dynamic and evolving networks. Flooding
with these interesting features is widely used in unstructured P2P networks, such

as Gnutella2, KaZaa [19], and BitTorrent [20].



1.4 Problem Statement

Due to the advantages of unstructured P2P networks that were highlighted in the
preceding section, it has scalable storage for saving enormous volumes of digital
information. It can support the availability and freshness of its information, and
uses the slack in its resources in its nodes for deployment. Despite this advantage,
searching and indexing in unstructured P2P networks is the big challenge to be
tackled in the literature [21,22].

The main problem of searching in an unstructured P2P network with such a huge
amount of information is its performance. The existing searching methods have
low success rate, enormous volume of redundant messages, high latency, and small
coverage.

The fundamental search technique used in unstructured P2P networks is flooding.
Although it has well-known merits, such as a simple algorithm, high reliability,
moderate latency, and large coverage, it seriously limits the system’s scalability. In
order to tackle this negative aspect of flooding, the main issue can be decomposed

into two well-known and solvable sub-problems.

e Although flooding has considerable merits, it produces a huge amount of redun-
dant messages. The number of query messages grows exponentially with the
hop count [23]|. These redundant messages increase the peer processing in the

network, without enlarging the propagation scope.

e In addition, flooding follows a blind search algorithm discipline and therefore
has no opportunity to make use of the advantage of node heterogeneity from

participating in unstructured P2P networks.



1.5 Objectives of the Research

The main objective of this research is to propose a new search algorithm in order to
take advantage of the flooding search algorithm and super-peer merits to enhance
the search performance in unstructured P2P networks. The secondary objectives

of the research are:

e To propose an optimal point of a hop in the pure flooding search algorithm to
provide the minimum amount of redundant messages and maximize the search

efficiency.

e To propose an optimal threshold for a hop to switch from the flooding search

algorithm to the proposed QuickFlood and HybridFlood algorithms.

e To compare our novel algorithm with prevalent search algorithms.

1.6 Research Scope

This research mainly focuses on the search content in unstructured P2P networks.
The research excludes structured and centralized unstructured P2P networks. The
study uses an overlay network as an interconnecting layout for nodes, and thus the
physical layer is not considered in the study.

It is assumed that the overlay network is an undirected random graph in which
each node is represented as a peer, and they are connected to each other by edges.
Forwarding messages are in the form of bidirectional fashion between nodes. This
means that messages may be transferred in either direction along the edges. There
is no difference in broadband between peers in this study. A message that travels
from node A to node B must travel along a path in the graph. Each hop is the
distance from any nodes to its immediate neighbors.

The length of a path is known as the number of hops taken by the message. Two

nodes are said to be "n hops apart" if the shortest path between them has the
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length n. The number of hops inside the overlay is completely different from the
number of hops in the physical network.

The source node sends a query message to its neighbors by using the routing pol-
icy mechanism. Always positive respond to message back along the same path as
a query message was carried. It is assumed that peers are honest and coopera-
tive, thus malicious and free-rider peers are excluded and are out of scope of this

research.

1.7 Contributions of the Research

This study accounts for both analytical and algorithmic contributions.
e By the analytical contributions it has provided:

A. The optimum point of a hop count for the minimum number of redundant
messages and maximum rate of coverage growth in a pure flooding search

algorithm.

B. The optimal threshold of hop counts to switch from the flooding search

algorithm to the QuickFlood algorithm.

C. The optimal threshold of hop counts to switch from the flooding search algo-
rithm to the HybridFlood algorithm, and for the number of query messages
propagated to be cut down by at least an order of magnitude in the Hy-

bridFlood algorithm compared to the flooding search algorithm.
e By the algorithmic contributions it has provided:

A. QuickFlood and HybridFlood proposed novel algorithms for minimum cost

and maximum search efficiency.



1.8 Thesis Organization

This study is divided into seven chapters. Chapter 1 serves as an essential in-
troduction to the work. Chapter 2 gives an overview of the basic concepts and
related works and reviews, and discusses the existing search procedure in unstruc-
tured P2P networks. Chapter 3 introduces the methodology. Chapter 4 explains
the optimum hop count in flood-based algorithms. Chapters 5 and 6 design and
describe the QuickFlood and HybridFlood search algorithms, and finally Chapter

7 concludes this study and discusses potential areas of future research.
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CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

The most popular application in P2P, until now, is file-sharing [24]|. There are three
different types of functional unit in a file-sharing P2P network. These functional
units may be called provider, consumer and service. The provider provides the
information, the consumer is the one who requests the information, and service is
what provides the efficient facility and effective search for the relevant information.
In the other words, consumer and provider may also be called client and server,
and the service is similar to a router. A peer may act as a single practical unit
or as a combination of multiple functional units. It can act as both, or even as
all functional units, at the same time. A peer may act as a provider (server) and
consumer (client), or as a provider (server), consumer (client) and even service
(router). There are logical connections between peers which are established at
a protocol layer. The logical connections serve as data channels. This channel
exchanges information in the form of messages between peers.

Search is a basic and essential activity for all P2P applications, especially in a file-
sharing system. The two components of a P2P network are basic to the searching
procedure: overlay network topology and search mechanism. The overlay network
topology defines the practicality and responsibilities of each type of functional
unit, as well as the relations between peers with different types of functional unit.
A search mechanism specifies the process of the search with a set of protocols
describing how the contents are represented and used for searching.

The purpose of this chapter is a comprehensive review of the literature that is
relevant to the present study. The chapter begins with identifying the fundamental
terms and concepts, then overlay networks are explained, and the most common

search techniques used in unstructured P2P networks are reviewed.



2.2 Fundamental Terms and Concepts

P2P definitions: P2P has many definitions in the literature; however one of the
most complete definitions has been stated in [1] as: "Peer-to-peer systems are
distributed systems consisting of interconnected nodes able to self-organize into
network topologies with the purpose of sharing resources such as content, CPU
cycles, storage and bandwidth, capable of adapting to failures and accommodating
transient populations of nodes while maintaining acceptable connectivity and per-
formance, without requiring the intermediation or support of a global centralized
server or authority."

Table 2.1 presents fundamental terms and concepts used in this study. Throughout

this study, the terms node, peer, user, and servent are used interchangeably.

2.3 Overly Network

An overlay network is a set of logical connections used to organize the peers in
the network in a protocol layer. In the other words, the overlay network or P2P
network |33] is a virtual network of nodes and logical links that is built on top
of an existing network with the purpose of implementing a network service that
is not available in the existing network. The functioning protocol in the overlay
network is such as the Internet. In a P2P network, each node keeps a limited
number of connections with other peers, which are called its immediate neighbors,
the graph of a peer’s connections establishes the overlay network. The overlay
network can be classified [34] as: flat [35], tree-based [36], and hybrid-based P2P

network topologies [37-40].

2.3.1 Flat P2P Network Topology

In this category [35,41], all nodes play the same role, and they have equal respon-
sibility. The nodes keep a set of neighbors to create an overlay network. This node
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Table 2.1: Fundamental terms and descriptions

Term

Description

Peer

Also called node [25] or user |26], is a participating entity
in the network. Peers act as a server or client and even
router, so is also called a servent |27|.

Overlay network

Overlay network [28| is a virtual network which consists
of nodes and logical links that are built on top of the
physical network. The purpose of overlay network is to
implement a network service that is not available in the
existing network.

Hop Hop is the virtual distance between a peer with its imme-
diate neighbors in an overlay network.

Hop count Hop count is the number of hops that are counted in an
overlay network.

Low-hops Low-hops are the sequence of initial hops [16].

High-hops High-hops are the sequence of final hops [16].

Peerld Peerld is a unique random number which is assigned to

any peer for identification.

Source peer

Source peer also called routing peer |29 or query origi-
nator [30] is a peer who publishes a query message and
broadcasts it to other nodes, and receives results.

Query message

The query message [29] is a message that is sent to other
peers in order to find the object. It is published by the
source peer and contains the following fields; queryld,
requested-keywords, TT'L value, and source-peer’ s Id.

Queryld

The Queryld is a unique random number assigned to each
query for identification.

Requested-keywords

The Requested-keywords field contains search keywords,
which are received from a user.

Source-peer’s Id

Source-peer’s Id is identical to the peer’s Id for a typical
peer who is now a source peer.

TTL

The T'T'L is an the abbreviation for Time-to-Live, which
is indicated by the number of hops or life time that a
query message can traverse.

QueryHit

A peer receiving a query which has math within its data
generates a QueryHit. The QueryHit message back along
the source peer same path that received query [31].

Churn rate

The Churn rate is the average fraction of peers who move
or are out of the network for a specific period [32].

Time step

The time step is the amount of time a cycle of the simu-
lation takes to complete.
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ClientO Server ‘ Router O Connection

Figure 2.1: Flat network topology each nodes act as a client, a server
and a router simultaneously

structure may simultaneously act as a client, server, and also as a router. Nodes in
a flat network topology have no knowledge about the content of other neighbors.
Hence, as well as a node request for an object that is not available in its content
it has to forward the query to other nodes. A flat P2P network topology is an

unstructured P2P network [34]. A typical flat topology is presented in Figure 2.1.

2.3.2 Tree-based P2P Network Topology

In this kind of topology [36,42], data are propagated along a distributed tree that
is rooted at the source peer. This type of topology cannot take full advantage
of the network’s resources, and the system can easily become unbalanced due
to the bandwidth of the leaf peers not being utilized. Furthermore, the system
is vulnerable to peer churn since at any time any middle peer’s departure will
disconnect all descendants of the peer from the content forwarding tree. Many
attempts have been made to resolve this limitation, such as multiple tree-based
topologies [43]. Such study is out of this scope Figure 2.2 presents part of a typical

tree-based network topology.
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ClientO Server ‘ Router O connections

Figure 2.2: Part of tree-based P2P network topology

2.3.3 Hybrid P2P Network Topology

In a Hybrid P2P Network Topology [37-40,44, 45|, the nodes are classified into
two classes, super-peers and ordinary peers. Each super-peer and its clients are
connected and formed a cluster. Ordinary nodes are connected to super-peers and
provide their local objects to the super-peer. Super-peers maintain the index of
all the objects which are available in their cluster. Super-peers are connected to
themselves and form an overlay network similar to the overlay of the flat P2P
network. The search begins with a request which is published by an ordinary
node. The ordinary node forwards its query message to the relevant super-peer.
The super-peer first checks its indexes, and if it is found then sends the object’s
location to the requesting node. Otherwise the super-peer begins to search among
the other super-peers, in exactly the same way as performed in a flat P2P network.

Figure 2.3 presents a typical hybrid topology.
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Figure 2.3: Hybrid P2P network

2.4 Search Techniques in Unstructured P2P Networks

The main objective of each search algorithm is to successfully locate resources
while incurring low overheads and delay [46]. In an unstructured P2P network,
there is neither a centralized index nor strict control over the network’s topology
or file placement. Designing an efficient search in such a system is difficult, due to
its scale and the unreliability of individual peers. Many attempts have been made
to develop an efficient search system for this type of P2P network [32,47,48|. We
can classify search in this area as blind and informed search. The blind search can
be further classified as a blind search in flat topology or flood-based algorithms,

and a blind search in super-peer topology [49].
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Search Algorithms for
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Network
Blind Search Informed Search
| | @ Adaptive Probabilistic Search
(APS)
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@ Flooding @ Dynamic Querying (DQ) Like Flooding
® Expanding Ring @ Enhanced Dynamic Querying (DQ+)
® Blocking Expanding Ring Like Flooding
@ Random Breadth-First Search (RBFS) or ® AntSearch

Teeming o Differentiated Search (Diffsearch)
@ Normalized Flooding @ Gnutella UDP Extension For Scalable
® Random Walk Search (GUSS)
o K Random Walk
@ Local Flooding with K Independent

Random Walk

Figure 2.4: Search techniques in unstructured P2P network

2.4.1 Blind Search Algorithms

Blind search schemes utilize flooding methods to broadcast the queries to peers
in the network. Peers keep no information about the P2P network or object
locations for routing queries. Features such as scalability, success rate, and latency
are employed to evaluate the performance of a search algorithm. This searching
scheme can be classified as a blind search for flat topology and blind search for
super-peer. Figure 2.4 presents search algorithms in unstructured P2P networks.
Blind Search Algorithms for Flat Topology

This kind of searching technique employs a flooding algorithm to forward queries.
Peers have no information on the network topology and file distribution. Metrics
such as scalability, success rate and latency are employed to evaluate the perfor-
mance of these search techniques. Scalability of search can be measured by the
number of redundant messages produce by the search algorithm.

Flood-based [35] techniques are searching techniques that substantially follow the
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Breadth First Searching [50] (BFS) algorithm. The aim of these methods is to
expand and examine all nodes of a network. All nodes in this approach are utilized
equally, and they do not have the opportunity to exploit the node’s heterogeneities
and source locations. This kind of search does not use the heuristic algorithm.
Flooding

Flooding, or the BFS algorithm, has no knowledge about the overlay topology
and file distribution. Therefore it is attractive for searching in unstructured P2P
networks [51]. It starts from a source peer with an initial Time-to-Live value (for
instance, TTL = k), and broadcasts a query message in a hop-to-hop fashion
counted by the TT'L count. TT'L is decremented by each hop. Each node acts
as both a sender and receiver, and each node tries to forward every message to
every one of its neighbors except the source node. A message comes to end when it
either receives sufficient information to respond, its TT'L reaches zero, or because
it becomes a redundant message. Figure 2.5 presents a sample flooding procedure
in an unstructured P2P network.

Expanding Ring

The Expanding Ring (ER) search is the first control-77 L-based flooding algorithm
[52]. Tt uses successive flooding searches, with different T7'L value. The source
peers start by sending query messages to its immediate neighbors with the initial
TTL value. The query messages come to end when either it receives sufficient
information to respond, its T"T'L value reaches to zero, or because the messages
are redundant. If no adequate query message is received within a time-out interval,
the source peer assumes that this attempt has failed. Therefore, it starts a new
round of searches with a larger T'T'L value. This process could be repeated over
multiple rounds. Obviously, by controlling the 7T7'L value this scheme reduces the
huge broadcasting overhead. It is widely used in multi-hop networks [53|, such as

ad-hoc and sensor networks [54]. Figure 2.6 presents a sample of an expanding
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Figure 2.5: Flooding procedure

ring.

Blocking Expanding Ring

The Blocking Expanding Ring (BER) search [55] is an adapted version of the
expanding ring search and is similar to iterative deepening [34,49]. This is also a
successive flooding search with a different 77'L value. It starts at the source peer
with a query message with an initial 7"T'L value. The default message comes to
end when it either becomes a redundant message or because its 1"'L value has
expired or it has received an adequate response. In this process, if no sufficient
response is received within a time-out interval, the source node assumes that this
attempt has failed. Hence, it starts a new round of searches with a larger TTL
value, but not from the source node, but rather from all nodes that took part in
the last attempt. The main difference between this algorithm and ER concerns
the rebroadcast procedure. In BER the rebroadcast procedure starts from all the

nodes involved in the previous attempt. Figure 2.7 presents the blocking expanding
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Figure 2.6: Expanding ring procedure

ring technique.

Random Breadth-First-Search (RBFS) or Teeming

Random Breadth-First-Search [56] or teeming |10] is an uninformed search algo-
rithm that has been proposed as an alternative to basic flooding. This variation
of the flooding algorithm restricts the search space, such as by random walkers or
paths [56,57|. It is probabilistic flooding, which based on flooding, but forwarded
the query to only certain percentage () of the node’s neighbors at each step.

In this algorithm, at each step if the files or data are not found in the local cache
of a node then the node only propagates the inquiring message to a random subset
of its neighbors. This technique uses a fixed probability such as 6 for selecting a
particular neighbor. The teeming algorithm, in contrast with flooding, is no longer

d_ary but is dx6 _ary. Figure 2.8 presents a sample of a teeming algorithm.
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Source node

Node

Selected Node o

Connection

Figure 2.8: Teeming procedure with assumed probability = 0.5

Normalized Flooding
This technique [58| is same as flooding; each node only sends a message to a

subset of its neighbors. The subset is selected based on the minimum degree in the
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network. Assume that ¢ is the minimum degree of a node in the network. If a new
visiting node has a degree of more than ¢, then the query will only be forwarded
to a 0 subset of its neighbors. This subset node is selected uniformly in a random
fashion. In this algorithm for d is not properly selected then low degree nodes
that are hosting good content will be left out during searching. Other features of
nodes such as a number of objects, storage and bandwidth are not considered in
this algorithm.

Random Walk

A Random Walker is modified version of flooding, which forwards a query message
(walker) [57] to only one randomly chosen neighbor. The message comes to end
when either the number of results is satisfied, a message becomes redundant, or
when its Time-to-Live expires. It is a well-known searching protocol based on
Depth-First Search (DFS) search algorithms.

To speed up the respond time in Random Walker, versions of the random walk are
adopted such as k-walker [57] and two level random walkers. The k-walker [58]
(Random Breadth-First Search (RBFS) or teeming) forwards a query message
(walker) to a k& random subset of its neighbors. Figure 2.9 presents the random
walk technique.

K Random Walk

Qin Lo et al. in [57], have proposed a new version of the random walker to reduce
the delay and increase the number of walkers. This method is called the k-walker
algorithm. In this new technique, instead of just sending out one query messages
in each hop, the requesting peer sends out K query messages, and each query
continues its own random walk. This algorithm after 7" hops expects KT walkers.
Therefore, the delay should be reduced by a factor of K.

To terminate the walkers, this algorithm proposes two methods; T"T'L and checking.

TTL is similar to flooding. Each walker is terminated after a certain number of
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Figure 2.9: Random walk procedure

hops. For checking, each Walker periodically checks with the source peer before
walking to the next node.

There is another version of the random walker called two-level [59]. In the first
step of the two-level query the nodes select k; random walks with TT Ly = [y,
when this step is finished the last node chooses k9 random walks with 77T Lo = [o.
This technique generates fewer duplicate messages but has a longer search delay
than the k-walker.

Local Flooding With K Independent Random Walks

This search method [58] is a compromise between flooding and random walk. In
the first step the algorithm follows flooding until it precisely discovers k£ new outer
nodes, for some predefined value of k. If one of these nodes hosts the object the
search is successful and the process is terminated. Otherwise, each k£ node starts an
independent random walk. If the files or data are located close to the source peer,
then local flooding would be sufficient to locate it quickly with just few messages
exchanged. If the file is located far away from the source peer, it is expected that
it will be located by one of the random walks. Meanwhile, the flooding occurs
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only locally the message complexity is small. If the search is continued by the
independent random walk after local flooding with large TT'L values, the message
production will be huge and the performance will be decreased.

Blind Search Algorithms for Super-Peer

The few blind search methods designed for unstructured P2P networks are based on
super-peer to controlled flooding. Dynamic Querying (DQ) like flooding, Enhanced
Dynamic Querying (DQ-+) like flooding, AntSearch, Differentiated, and Gnutella
UDP extensions for Scalable Search are the nominated techniques for review
Dynamic Querying (DQ) Like Flooding

This flooding technique is designed for super-peer architecture [24]. The main goal
of this method is to estimate the size of the query’s popularity. In DQ the source
peer sends a probe query to a few neighbors with a small TT'L. If the probe does
not receive the number of results. Then the source peer begins an iterative process
to dynamically evaluate the T"I'L for the remaining neighbors.

Such controlled flooding reduces much of the network traffic [60,61]. DQ has two
benefits, first it avoids sending query packets too far. Second, it does not send
query packets repeatedly to the same subset of peers. This controlled flooding
technique has a minimum search cost, while it increases the latency perceived by
the peers. The reason that this algorithm increases the latency is that it is very
conservative in propagating the query packets to the network

Enhanced Dynamic Querying (DQ+) Like Flooding

Jiang et al. in [62] proposed a new algorithm to achieve a lower search cost.
This new algorithm is called Enhanced Dynamic Querying (DQ+). The main
difference between these two algorithms (DQ and DQ+) concerns the iterative
process of the enhanced algorithms. In DQ-+ each iterative process follows two
main polices. First, the iterative process is greedy: the source peer propagates the

query to a new neighbor wanting to determine all the required results from this
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neighbor alone. Second, the iterative process is conservative: at the same time the
source peer avoids propagating the messages to all peers, which made overshooting
problem. The source peer uses a confidence interval method to provide a safety
barrier on the estimation of the popularity of the search item. Compared to the
DQ, the DQ+ query is only flooded to a small number of the peers. Thus, this
technique performs well with respect to search latency. The main defect of this
algorithm is when searching for unpopular items, as the search cost for this item
is high.

AntSearch

FEytan et al. in |63] shows that 70% of users are not sharing any files, these kind of
users are called free-riders [64]. Free-riders are those who use the system for free.
The problem is that free-riders produce a large amount of redundant messages in
the system. AntSearch [24] is a developed version of Enhanced Dynamic Querying.
It designed for solving the problems of free-riding while searching unstructured P2P

networks. AntSearch performs its algorithm in three phases:

e Assignment phase: In this phase pheromone value is assigned to the immediate
nodes. Each peer maintains its hit rate of the previous queries, and records a

list of pheromone values for its immediate neighbors.

e Probe phase: In this stage the requester peer sends queries to a few neighbors
with TTL = 2. From this probe’s queries it estimates the popularity of the
target file. After this phase, the requester peer collects the statistical information
about the search file. From this information, the requester peer can predict how
many results may be retrieved when each step only floods the query to k% of its

immediate neighbors. All the information will be collected in the probe table.

e Flooding phase: The requester peer has to decide the two parameters for the
query flooding, the k value and TT'L value. The k value identifies the percentage

of neighbors that must be chosen to flood a query. The TT'L value represents
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the upper bound of the flooding hops. The requester peer will now propagate
the query to the £% of neighbors by the estimated TT'L, and only to neighbors

which have higher pheromone values.

The AntSearch algorithm significantly reduces redundant messages during query
flooding. Thus it decreases more overhead messages, and its performance improves
over time because the node has learnt more information about its neighbors. How-
ever, it has a high search cost, because each time it must evaluate the pheromone
of its neighbors and produce a probe table. Differentiated Search (DiffSearch)
Wang et al. in |65 proposed a new search algorithm based on an ultrapeer overlay.
The DiffSearch algorithm selects an ultrapeer as a peer with a high querying reply
capability. Ultrapeers form an overlay and ordinary peers serve as leaf peers.
Leaf peers upload their indices to the ultrapeer, and allow them to be shared by
differentiated searches. The main idea behind using an ultrapeer is based on the
work of E. Adar et al. |63], which shows that only 1% of peers answer the main
portion of a query. Hence, by routing queries to selected peers it is possible to
save up to 90% of query traffic. Search using this algorithm is performed in two
rounds; in the first round the query is only forwarded to the ultrapeer overlay. If
the search result in the first round fails, the second round starts by querying the
entire network. The precondition in the DiffSearch algorithm is that the ultrapeer
overlay must consist of content-rich peers who are well formed in a P2P network.
The load-balancing problem in DiffSearch has been solved by uploading indices of
the leaf nodes to the ultrapeers. The main advantage of the differentiated search
technique is that it extensively reduces the search traffic due to a reduced search
space. However, the pure flooding search in the second round produces more

overheads on the network.
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Gnutella UDP Extension for Scalable Search (GUSS)

Search using this technique [57,66| is conducted by iteratively contacting various
super-peers and having them question all their leaves, until sufficient objects are
found. The important feature of GUESS is that query messages are not broadcast
by a flooding-based algorithm. In addition the peer merely iterates through the
entries in its link cache, and performs a search on the target peer. In GUESS, the
number of leaves per super-peer must be kept high, in order to receive sufficient
results. However, the larger number of probes produces a larger cache size, but
they do not guarantee more satisfied queries. There are fewer numbers of peers who

wish to share the large number of objects, thus many queries will go unsatisfied.

2.4.2 Informed Search Algorithms

In this type of searching technique peers retain some kind of routing information
about forwarding the query to suitable peers. The range of this information is
based on different parameters, such as the popularity of objects, success rate and so
on. This class of search techniques refers to the weighted selection of relay neighbors
[67]. In this class, instead of randomly selecting neighbors, some techniques have
been proposed to select neighbors more objectively.

The informed search offers a smaller response time to blind searching. while it
increases the cost of the search and the overhead of maintaining indexes. Although
the focus of the thesis is outside informed searches, the following section reviews
and compares the most prevalent informed searching techniques in unstructured

P2P networks.
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Adaptive Probabilistic Search (APS)

In this method, quantitative data is implemented as probabilistic information in
order to facilitate the search operation |68-70]. The main difference between this
method and the random walker is that in this method a node is utilized from an
earlier response to probabilistically direct future walkers. Whereas in the random
walker technique the future walk is selected by random. Each node in the APS
keeps a table for the forwarding probability to each neighbor for each resource.
Each value in the table evaluates the probability of the node’s neighbor to be
selected as the next hop in a future request for the specific object. The APS method
implements k random walkers to search for the required object with a probability
given by its table index. These index values use feedback after each Walker process
and updated. The value of the relative probabilities of the walker succeeding or
failing are increased or decreased. In APS the discipline duplicate messages are
considered a failure state. The performance of this method in comparison with
the random walker is improved. This method results in more discovered objects,
a higher success rate, low bandwidth consumption and an adaptation to changing
topologies. The search process in APS does not involve object placement and
P2P overlay topology. It is just assumed that the storage of objects and their
copies in the network follows a replication distribution. The method for evaluating
the probability of selecting a node for query forwarding has a major fault. The
evaluation does not consider some important parameters such as bandwidth and

storage availability when choosing the target peers.
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Gia

The search protocol in Gia [15], in using a biased random walk, uses an active
flow-control. The flow-control allows a sender to direct queries to a neighbor, but
only if the neighbor has notified the sender that it is willing to accept queries from
the sender.

In Gia, a node selects the highest capacity neighbor for which it has flow-control
tokens. It then sends the query to a selected neighbor. In cases where the node
does not have tokens from any neighbor it queues the query until new tokens
arrive. Gia uses a bookkeeping procedure to avoid redundant paths. With the
bookkeeping procedure, each query is assigned a unique global identifier (GUID)
with its source node. A node remembers the neighbors to which it has previously
forwarded queries for a given GUID. If a query with an equal GUID arrives back
at the node, it is forwarded to a different neighbor. This procedure reduces the
likelihood that a query traverses the same path twice.

Gia improves flooding-based search methods by many orders of magnitude in terms
of the aggregate query load. All nodes provide one-hop replication with keeping
pointer to the content offered by their immediate neighbors. There are two main
problems, which are not considered in Gia. First, the indexing resources of the
neighbors increase the responsibilities of each peer, plus the communication over-
head. Second is how fast can the algorithm work for joining peers, and at what
cost to their vicinity.

Local Indices (LI)

In Local Indices [10], each node maintains an index of the content of all neighbors
within an r hop distance from itself. The distance is called the radius of the index
(for instance, for r = 0 it exactly follows the flooding algorithm, where a node only
indexes its own meta data). To minimize the overhead, the hop-distance between

two consecutive depths must be 2r+1. Thus when a node receives a query message
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it can be processed on behalf of every node within r hops. Therefore, the data
of many nodes can be searched by a few nodes. This approach resembles the
two search schemes for hybrid networks. The search procedure in local indices is
performed in a BFS-like method. There is a policy which specifies the depths at
which the query should be processed. All nodes at depths not listed in the policy
simply forward the query to a next path.

The advantage of this technique is that it increases the search performance for
power-law topologies where only a few nodes have a very large number of neigh-
bors. It also reduces the search bandwidth costs, and improves scalability. The
disadvantages of this technique are: first, it increases the storage cost for main-
taining an index, second it is fault tolerant, third its reliability is low, and finally
it takes extra steps to update the indexes every time a node joins or leaves the

network.

2.5 Super-Peer Selection and Searching Algorithms

There are three types of P2P system [38] that express varying levels of centraliza-
tion.

First, centralized unstructured P2P systems function as a centralized component.
In this type of system, the search is performed over a centralized directory; however
downloads still occurs in a P2P fashion. Hence, peers are only equal in download.
Napster is a well-known example of this type of unstructured P2P system.
Second, decentralized or pure unstructured P2P systems function as a decentral-
ized component. Two samples of this system are Gnutella |71| and Freenet [72].
In this type of system, all peers have equal roles and responsibilities in all aspects.
All the peers in this category may act as a client, server or router, and they all
can query and download, etc.

The third type of P2P system, which reflect a varying degree of centralization,
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are called super-peers. The super-peer systems function as a cross between pure
centralized and decentralized systems. They have two advantages, first compared
with pure or decentralized P2P systems they can exploit the heterogeneity in
peers. Second, compared with centralized systems they do not have any unique
centralized components, thus they are not threatened by a single point failure of
the server.

This section reviews P2P systems with the simplest super-peer selection. This
category does not include super-peer selection relay on higher-level applications,
or super-peer sets that are hardcoded. The review does not include systems where
super-peer are selected manually, or systems that use a centralized component for
manipulating super-peer management.

The reviews start with OceanStore, one of the first P2P systems that assumed the
use of super-peers. The section then describes some file-sharing systems that
depend on super-peers, such as Gnutella, KaZaa, Gnutella 0.6, eDonkey, and
supernode-based P2P file-sharing networks. The review investigates and focuses

on two main factors in each super-peer system:

e The method of super-peer selection or the determination of which peers are the

best candidates for super-peers.

e The search procedure in the selected super-peer system.

2.5.1 OceanStore

OceanStore is a global-scale distributed storage system for persistent data and
is one of the first systems to propose the use of a super-peer system [73,74]. It
was published in 2000, and can be called as a predecessor to P2P systems, which
was designed to run on a large number of nodes distributed around the world.
OceanStore is maintained by several independent autonomous providers. In order

to improve its reliability and performance it used a proactive replication algorithm.
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The algorithm replicated and spread the data stored in OceanStore evenly across
all nodes. Each data object has a primary replica, which updates periodically
to verify access, and constructs a broadcasting tree between secondary replicas.
These primary replicas are hosted on a selected set of nodes. These nodes are
called the primary tier or inner ring, which functions in OceanStore in a similar
way to super-peers in many P2P systems.

This primary tier consists of a small number of replicas located in high-bandwidth,
high-connectivity regions of the network [73]. OceanStore does not provide any
algorithm for the selection of nodes in the primary tier, but in order to the replica-
tion protocol specification 75|, nodes that participate in the inner ring are selected
by system operators.

The search and resource discovery in OceanStore is controlled by a modified version
of the Plaxton algorithm [76]. This algorithm later evolved into Tapestry |77,
which is one of the first distributed hash table systems. In Tapestry, each data
item, as well as every peer in the system, is assigned a unique identifier. The
data items are assigned to peers based on their identifiers independent of their
physical locations. Thus peers maintain a system topology and routing tables that
enable efficient query routing and data access. Tapestry and the original Plaxton
algorithm distribute data and traffic equally between all peers in the system. They

deal with all peers in the system, as if they possessed uniform resources.

2.5.2 Brocade

Brocade is an extension of Tapestry, which uses peer heterogeneity to improve the
routing performance [78|. In this system, high-capability super-peers, which are
titled landmark nodes, are used for routing messages through a wide-area network
on behalf of other peers who act as their clients. These landmark nodes maintain

a Tapestry network between each other and use the Tapestry routing algorithm.
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The landmark nodes also maintain lists of their clients.

Super-peers are selected in Brocade among the nodes with certain characteristics
by the Internet Service Provider (ISP) in each local network. The selected nodes
have remarkable processing power, a minimum number of IP hops to the wide-
area network, and high-bandwidth upload links [78]. The gateways routers or
machines that are close to the ISP are attractive candidates for super-peers [78|.
In this system, although an election algorithm is mentioned, no detail of such an
algorithm is provided.

The search and resource discovery in Brocade includes two mechanisms. In the first
mechanism, super-peers monitor the traffic in their local networks and intercept
all messages destined to peers located in remote networks. These messages are
subsequently tunneled and forwarded over the Tapestry overlay by the super-peers.
However, this approach necessitates that every local network in the system has at
least one super-peer, and the network must be configured in such a way that the
super-peers can intercept messages from all local peers. Such a requirement may
be a serious obstruction in the system’s deployment.

The second mechanism counts on the use of predefined names in the Domain
Name System (DNS) to identify super-peers. Each super-peer, when selected,
binds its address to a fixed name in the local DNS domain. Every client can find
its super-peer by resolving the fixed name in its own local DNS domain. If there is
no super-peer or no super-peer is found, the client can itself become a super-peer.
However, this technique again requires that at least one super-peer must be created
for every local DNS domain in the system, and also in addition super-peers must

be allowed to alter their DNS domains in order to register.
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2.5.3 Gnutella

Gnutella was one of the first file-sharing applications that introduced super-peers.
In Gnutella, each peer specifies a number of files that it agrees to with other peers.
Therefore, in this system each peer can potentially download any available file by
other peers. Every file sharing system provides a search facility that allows peers
to discover files shared by other peers. In this regard, Napster uses a centralized
server that keeps track of all files hosted by peers in the system. However, most
P2P file-sharing systems offer a decentralized search scheme facility which performs
a search by generating a search query. The query message is broadcast on the P2P
overlay, and peers who store files that match the query reply back to the searching
peer.

The first file-sharing systems, such as the early version of Gnutella, used a flood-
ing scheme to propagate queries across all peers. Further search techniques fre-
quently used include random walks, Breadth First Search (BFS), Depth First
Search (DFS), and Expanding Ring (ER). However, these search schemes, called
blind search methods, have the drawback that they potentially need to broadcast
search queries to all peers in the system in order to find matching results. Accord-
ingly, when the size of the system grows and more search queries are produced,
most of the peers receive more search messages. Therefore, the system becomes
unscalable as the search overhead is inevitable.

Gnutella, in addressing this problem [11,12], divides peers into two sets: leaves and
hubs. Leave nodes maintain one or two links to hubs, while hubs allow hundreds
of leaves, and numerous connections to other hubs. When a search is started the
node contacts the hubs in the list, noting which have been searched, until the list
is exhausted, or a predefined search margin has been reached. This permits a user
to find a popular file without loading the entire network. Hubs index the files

that a leaf has been using with a Query Routing Table. Gnutella also has a meta
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data system for more complete category, ranking, and quality information to be
provided in the search results.

Gnutella uses a compression system in its network connections to reduce the band-
width used by the network. Gnutella is more efficient, as continuing a search does
not exponentially increase the network traffic. Queries are not directed through
as many nodes, and the granularity of a search grows, allowing a client to stop
once a pre-defined threshold of results has been obtained more effectively than in
Gnutella. However, the scheme increase the complexity of the network and the
network maintenance required, because extra indices need to be maintained in

super peers.

2.5.4 KaZaa

KaZaa has solved the scalability problems that Gnutella and other file-sharing
systems have experienced. It is the first file-sharing application that introduced
super-peers for handling searches [3,79|.

KaZaa divided peers into two classes, high-capability peers and ordinary peers.
The high-capability peers or super-peers are also called supernodes, and ordinary
peers are called clients. The algorithm of super-peer selection in KaZaa is not
publicly available. Some evidence has identified that KaZaa uses local knowledge
in its super-peer selection [80]. Each super-peer keeps an index of all the files or
data stored on its clients.

KaZaa counts on the FastTrack protocol for search and resource discovery. The
search process in KaZaa begins with a client submitting a search query to its
super-peer. Then the super-peer broadcasts the query to other super-peers. If the
super-peer receives results from the other super-peers, it forward the results back
to the client.

The search strategy in KaZaa has two advantages compared with the traditional
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search algorithms of P2P networks. First, the search message is just exchanged be-
tween super-peers. Thus, the number of peers who participate in the search is lim-
ited. Second, the search is handled by selected, high-capability peers (super-peers)
and prevents low-capability peers (clients) being involved, hence, the performance

of the search is improved.

2.5.5 Gnutella 0.6

As the super-peer approach in KaZaa became popular and proved its validity,
Gnutella version 0.6 also used super-peers as its coordinate based [81].

Gnutella 0.6 divided nodes into two categories: ultrapeer-capable and ultrapeer-
incapable. The difference between these two categories is based on minimum
performance requirements. The protocol of Gnutella 0.6 indicates that a peer is
capable of becoming an ultrapeer if it has, first of all, non-firewalled connections
to the Internet, and secondly has at least 20 KB/s downstream and 10 KB/s up-
stream bandwidth. In Gnutella 0.6 each ultrapeer can accept up to 32 connections
from leaves and up to 30 connections from other ultrapeers. Based on the Gnutella
0.6 protocol, if a leaf peer obtains 90% of an ultrapeer’s requirements it can change
to an ultrapeer. Usually, ultrapeers are generated when new peers join the net-
work, and ultrapeers are destroyed when peers leave the network. Furthermore,
each Gnutella user can force its peer to operate as an ultrapeer or a leaf. The
Gnutella 0.6 protocol is backward compatible with its earlier versions. Hence, it is
possible for ultrapeers and leaves to stay in one Gnutella overlay with peers that
do not distinguish between super-peers and clients, and still connect to all of them
in the same manner.

Gnutella 0.6 employ super-peers (ultrapeers) to index the files stored by clients
(leaves) for performing a search. The super-peer technology in Gnutella 0.6 reduces

the load on the lowest-performaning peers and improves the scalability of the
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Gnutella network.

2.5.6 eDonkey

One of the most successful file-sharing systems is the eDonkey P2P system [82,83].
There are more than 4 million users [84] connected online at any given time to
eDonkey and its clients such as eMule |84] or MLDonkey [83].

The essentials of the system are based on the eDonkey protocol. The eDonkey
introduced super-peers, which are called eDonkey servers [85,86]. There is no
clear algorithm to identify super-peer selection in this file-sharing system. Each
peer in the eDonkey network is qualified to be setup as a server, and it may decide
manually by each eDonkey user [85].

The network technique in eDonkey follows a client-server architecture. Each of
its server indexes the resources which its clients provide. Servers in eDonkey do
not share any files, and they do not initiate any downloads. In eDonkey 2000,
there are three types of communications: server to server, client to server, and
client to client. The servers communicate over the UDP protocol to maintain a
list of other known servers. Clients login onto a server via a TCP protocol. They
provide their username, IP address, connection port, and the list of files that they
want to offer to the system. Then the server adds information about these files to
their database and consecutively assigns the user ID. Then each server sends the
list of other known servers to the user. This list usually contains 100-200 entries.
After this data is exchanged between clients and servers, the users can search and

download their required files.

2.5.7 Supernode Based P2P File-Sharing Networks

In [87], the authors do not specify any super-peer selection algorithm. However,

they describe a routing algorithm and a data caching scheme that takes advantage
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of super-peers. They state the following criteria for super-peers:
e High bandwidth connection

e Have enough computation power

e Cannot join/leave network frequently

e Have a large amount of storage

However, they have not specified the amount of bandwidth or computational power
or storage space required. In addition, they have not clarified how to estimate peer
stability [88]. The Supernode Based P2P File-Sharing Network (SBARC) used the

Pastry DHT [89] by routing messages through high-capability super-peers.

2.6 Related Works on Search Mechanisms

In this section, we have reviewed and analyzed all searching algorithms that are
proposed as state-of-the-art for unstructured P2P systems. Search algorithms in
this area can be classified as blind and informed search algorithms. The blind
search algorithms are further classified into the blind using flat topology and blind

search using super-peers.

2.6.1 Blind Search Algorithms Review

Blind search schemes use a flooding technique to broadcast the query messages
to the peers in the network. In this method, the peer has no knowledge about
P2P topology and the distribution of a resource. Flooding schemes have been
widely used in the communication network because of their good performance
with respect to the metrics [90,91]. Flooding has significant merits |7,46], such as
simple algorithms, low maintenance, large coverage, reliability, and dependency.

Based on these merits, it is used mostly in unstructured P2P networks [16,58,92].
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Despite these merits, it generates exponentially increasing redundant messages
which threaten the network’s scalability [93|. Jiang et al. [16], show that more
than 70% of messages generated by flooding are redundant messages within the
TTL of 7. Consequently, fully decentralized Gnutella-network like flooding does
not scale [94]. Flooding is efficient in low-hops, but by increasing the number of
hops it generates a huge amount of redundant messages. All searching techniques
reviewed here employed a flooding algorithm because of its simple algorithm, which
is easy to support and easy to implement. Table 2.2 represents the advantages and
disadvantages of flood-based search algorithms that used a flat topology.

To alleviate the harm of flooding, there are three major solutions in the literature,

which can be classified as:

e TTL Limit-Based Flooding (TLBF).

e Probabilistic Limit-Based Flooding (PLBF).
e Hybrid Limit-Based Flooding (HLBF).

TTL Limit-Based Flooding (TLBF)

TLBF are those algorithms that limit the Time-to-Live value for controlling the
flooding of overshooting messages. There are three major search algorithms in this
area, Expanding Ring, Iterative Deepening and Blocking Expanding Ring. These
algorithms propagate messages to the limited number of hops. Expending ring or
Iterative Deepening is the first control-77'L based flooding algorithm [52].
Indeed, this scheme uses successive floods with increasing 77'L values in each
round. Thus with each new iteration more messages cover a larger area of the
network. Although expanding ring has a simple algorithm and low overhead, it is
non-deterministic in returning results, and for resources that are far away from the

source node this approach could even generate more sever overshooting messages

than flooding [95].
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The main difference between Expanding Ring and Blocking Expanding Ring is with
respect to its rebroadcast procedure. In BER, the rebroadcast procedure started
from all nodes of the last attempt. The BER has gained better performance in
query success rate and a decrease in overshooting messages.

Although TLBF solutions have successfully controlled many overshooting mes-
sages, still they produce considerable amounts redundant messages, which limit
the system’s scalability. The reviewed schemes in this area indicated that this
type of solution has an uncertain performance for resources that are far away from

the source node and for unpopular objects.
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Table 2.2: Advantage and disadvantage of blind

flat topology?!

search algorithms for

Blocking Expanding
Ring (BER)

Random Breadth
First Search (RBFS)
or Teeming

Normalized flooding

Successive flooding
with increment of
TTL value from last
nodes in each round

Select portion of its
neighbors with fix
random value (such
as 0 )

Nodes are selected
based on the mini-
mum degree of nodes
in the network.(such
as 0)

3. Low overhead

—

Control flooding better than
expanding ring

2. Almost no duplicate mes-
sages

1. Decrease more
propagating

messages

2. Acceptable coverage

1. As nodes forward messages
to at most m neighbors.
Thus, message overhead is
reduced

Algorithm Description Advantage Disadvantage
Flooding Flood queries to all |1. Simple algorithm (popular in |1. Produce huge amount of re-
of its logical neigh- practice) dundant messages (unneces-
bours with certain sary traffic)
TTL value (BFS) 2. Large coverage
2. Very large overhead
3. High reliability
3. Wasting bandwidth and pro-
4. Moderate latency cessing resources
5. Locate rare resources 4. Limit system scalability
Expanding Ring |Successive flooding |1. Successfully control flooding |1. There are duplicate messages
(ER) (BFS) with incre-
ment of TTL value [2. More bandwidth efficient |2. None deterministic
when queried resources are
nearby 3. For resource far away from

source has sever duplicate
messages

4. Performance could be uncer-
tain for less popular files

1. For resource far away from
source has sever duplicate
messages

2. Performance could be uncer-
tain for less popular files

1. High performance nodes may
be skipped

2. Success rate decrease since
target nodes are selected ran-
domly

1. The value of minimum de-
gree (4) in network is not
clear

2. The problem of random se-
lection may cause high per-
formance nodes omitted

3. Low degree nodes may let
out from receiving queries

! The rest of table is in the next page.
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Algorithm

Description

Advantage

Disadvantage

Random walks

The k£ number of
nodes randomly
selected in each hop.
k is one for the
standard random
walks and is k for
k  random walk.
utilized probabilistic
routing procedure.

. Low message complexity. It
cut messages over head an
order to magnitude

. Algorithm scale well

. Gains local load-balancing

The problem of random se-
lection may cause high per-
formance nodes omitted.

Variable (unknown) perfor-
mance

For unpopular files almost
give up (no result)

4. High latency (an order of
magnitude increase in user-
perceived)

—

In order walker to more hops,
messages overhead is high

Local flooding with
k independent ran-
dom walk

Compromise be- |[1.
tween flooding and
random walks

Integrates the advantage of
flooding and random walk

2. If flooding happens locally, |2. The value of k in unclear
the message complexity is
low.

Probabilistic Limit-Based Flooding (PLBF)

PLBF are those algorithms for which a limited numbers of peers are visited in
each hop with a random selection discipline for controlling overshooting messages.
There are four major searches in this category: Random Breadth-First-Search
(RBFS), normalized flooding, Random Walks (RW), and k Random Walk, prop-
agates messages into randomly selected neighbors.

The RBF'S or teeming algorithm is dramatically reduces the number of overshoot-
ing messages. Although this method gains acceptable coverage, due to the nodes
chosen it may skip the chance of using high-performance nodes.

Normalized flooding is close to teeming in selecting the subset of nodes. The subset
is unique and equal to the least degree of nodes in the network. This technique
decreases the forwarding of messages in the network, hence the message overhead
reduces. However the proper selection of ¢ is critical; it may leave out low degree
nodes that are hosting good content.

The main idea behind the Random Walker is to limit the broadcasting area by

controlling the number of peers. This technique can reduce by an order of mag-
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nitude the number of overshooting messages compared to expanding ring and
flooding. However, there is also an order of magnitude increase in user-perceived
delay. Although its search cost is low, its performance is highly variable, it is
non-deterministic, and it is not reliable.

The proposed solutions of the PLBF type confirm the main problem of a randomly
chosen peers, such as variable (random) performance because it is possible to skip
high capability nodes due to chance. The schemes in this area analyzed have
shown that although these techniques cut the message overhead by an order to
magnitude, they also increase user-perceived delay by an order of magnitude.
Hybrid Limit-Based Flooding (HLBF)

The main goal of this group of search algorithms is to limit the number of peers
in each hop by either utilizing hybrid overlay networks or super-peer techniques.
There are many searching schemes in this category, such as the all bind search tech-
nique for super-peer structures and super-peer search techniques in unstructured
P2P networks.

The all super-peer search reviewed here are dynamic query-like flooding (DQ),
enhanced dynamic query-like flooding (DQ+), AntSearch, Diffsearch, GUSS and
Gnutella 2 that employ a super-peer as an ordinary node without any prominent
features. They simply dispatch information between so-called super-peers and
their unknown clients. In all these systems, there is no policy for the selection
of super-peers. Despite this, these systems have significantly controlled the issues
of flooding and improved search efficiency with a low search cost and high suc-
cess rate. Table 2.3 presents the advantages and disadvantages of blind search

algorithms using a super-peer.
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Table 2.3: Advantage and disadvantage of blind

search algorithms for

super—peerl
Algorithm Description Advantage Disadvantage
Dynamic querying |Used hybrid struc- Control flooding overshoot- |1. Selection of ultrapeers am-

like flooding (DQ,)

Enhanced Dynamic
querying like flood-
ing (DQ+)

AntSearch

Differentiated search
(DiffSearch)

ture As an ultrapeer

first, forwards a
probe query via
a few neighbors

with small TTL to
estimate popular-
ity of query. This
procedure  repeats
and estimate pop-
ularity = parameter
each time. (dynamic
fashion)

The iterative pro-
cess here is greedy
and conservative es-
timation of popular-
ity used confidence
interval.

Use same query re-
lying as (DQ, DQ+)

And consider free
riding problem.
Consist of  two

rounds First, query
forward to ultrapeer
overly if not satisfied
forward to entire
network.

ing messages
Reducing search cost

. Avoid sending query packets
too far

. Avoid send query packets to
same subset of peers

Same advantage as DQ plus

Reduce latency more than
four time

. Low degree peers often find
right number of result

Successfully control flood-
ing ( reduce redundant mes-
sages)

. latency is same as DQ

. Low overhead

Search traffic is significantly
reduced due shrunken search
space.

biguous.

The iterative process can in-
troduce long delay

The query is propagated to
just a small fraction of re-
quired number of peers

Method is doomed to have
high latency

The estimating number of all
nodes in network is not pos-
sible due to high churn rate
of nodes

Selection of ultrapeers am-
biguous.

Search cost for less and none
popular items are high

The estimating number of all
nodes in network is not pos-
sible due to high churn rate
of nodes

Selection of ultrapeers am-
biguous.

Overshooting problem be-
cause the physical number of
search peer is larger than es-
timated number of peers.

The second round of search
causes overhead in network
due to flood of messages

. The index uploading adds a
small cost to the overhead

I The rest of table is in the next page.
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Algorithm Description Advantage Disadvantage

Gnutella UDP ex- |Iterative contacting |1. Controlled flooding 1. Even there is larger cache
tension for scalable |various super-peers size in a larger number of
search (GUESS) and having them in- probes, they do not guaran-

quire all their leaves. tee to more satisfied queries

2. Since there are few number
of peers that wish to share
a large number of objects,
many queries will go unsat-
isfied

2.6.2 Informed Search Algorithms Review

Informed search algorithms are those who nodes save some kind of routing infor-
mation for forwarding the query to the appropriate nodes.

The sort of this information is based on different parameters, such as the popularity
and similarity of their objects, and other relevant factors. In this class of search,
each peer is ranked related to its parameters and queries routed to nodes that
have top rank. Normally, most informed search methods improve the success rate.
However, they produce a lot of update messages in dynamic P2P environments.

Table 2.4 presents the advantages and disadvantages of informed search algorithms.

2.6.3 Super-peer Search Algorithms Review

Yang and Garcia-Molina [38] divided P2P into three categories. First, Pure P2P
networks such as Freenet and the initial version of Gnutella, where all peers are
similar and have the same roles and responsibilities in all aspects, and thus the
system’s functionality is fully decentralized.

Second, hybrid systems such as Napster where some functionality is handled by
a main directory or server (such as search). However, downloading in Napster
is decentralized because downloads are performed directly between peers. Third,
super-peer networks [96-98] such as KaZaa, which act like a cross between pure and
hybrid P2P networks. In these networks, the super-peer is a node that operates as

a centralized server to a set of clients. Each super peer with its clients is called a
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Table 2.4: Advantage and disadvantage of informed search algorithms

Algorithm

Description

Advantage

Disadvantage

Adaptive Probabilis-
tic Search (APS)

Gia

Local Indices

Searching is ac-
cording to the uses
of k independent
walker and proba-
bilistic forwarding.
Each intermediate
neighbor sends the
query to one of its
immediate neighbor

with probability
given by its local
index. The index

values are updated
by using feedback
from the walkers

A search protocol
is according to bi-
ased random walk, it
directed queries to-
ward high-capacity
nodes, which usually
able to supply best
answer.

Every peer keeps a
local index of the
content of all its
neighboring  peers
within hop distance
called the radius of
index

1. Bandwidth efficient

2. Probabilistic selection of

peers instead of random
selection
3. Shows robustness when

topology changes.

4. Nodes finally share, pro-
cess and update their search
knowledge with the time.

1. Uses an active flow control to
avoid hotspots

2. By bookkeeping reduce the
query-dropping rate in flood-
ing

3. Effectively manage load bal-
ancing time.

1. Displays good performance
for power-law networks ( few
nodes have very large num-
ber of neighbors)

2. Decreased search cost and
bandwidth and improve scal-
ability

1. Popular files have more
chance to located than other
files

2. The peer discovered first
might used more for future
routine and might experience
more load. Concurrently,
other peers, which are closer,
could be ignored.

3. The load-balancing is not
considered

4. There is not considered other
features of node such as
bandwidth, storage, degree.
And all nodes given equal
status.

5. Free rider problems not con-
sider

6. There exists partial coverage
problem

1. Produce more communica-
tion overhead

2. Low-capacity nodes has no
chance to select, thus, un-
popular objects may not
queried

1. In order dynamic network,
extra steps must be taken for
update indices every time a
node joins or leave

2. In creased storage cost and
keeping index

3. Reliability and fault-

tolerance are low
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cluster; the cluster size is the number of nodes in the cluster, including the super-
peer. Clients in each cluster communicate with their super-peer as in a traditional
client-server. Super-peers construct a secondary topology for communication with
each other. The advantage of the super-peer compared with pure flooding is that
a super-peer can exploit the heterogeneity in peers. The advantage of super-
peers compared with a hybrid network is that the super-peer does not have any
centralized part. The main reason in this type of solution is the chance to improve
the quality of the search the decreasing or increasing the role of one scheme in
combination. Introducing a hybrid technique can improve the performance and
scalability of the search technique in P2P networks.

The systems reviewed here all employ very simple approaches to super-peer se-
lection and management. Centralized systems prepared reliability and scalability
in search, which is in contradiction with the nature of a P2P network. Manually
selection of the super-peer is impossible due to the large scale, dynamism, and
complexity of P2P networks.

Most of the systems reviewed have indicated criteria for super-peer selection. They
have described their criteria as a high amount of available bandwidth, storage
space, processing power, and long session time. However, they did not provide a
specific mechanism for the estimation of the amount of the high in any of criteria.
In several reviewed systems, the super-peer characteristic is defined in a static
mode, which is not acceptable due to the P2P’s dynamic nature. The perfor-
mance of systems and the number of super-peers have a mutual relationship, in
all applications the number of super-peers must be the optimum. For example, in
file-sharing applications, the number of super-peers in order to reduce traffic must
be low, while it should by high enough in order to be load-balancing.

To limit the number of super-peers to a desirable level requires a global knowledge

of peer characteristics. Many P2P networks assumed that the peer’s properties
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followed a certain distribution. There are many reasons why the distribution of a
peer’s characteristics has been changed.

By developing new technologies and the growth of the Internet over time, a natural
change has occurred. The capabilities of computers are increasing exponentially
every two years [99]. The changeable network conditions and general behavior of
users are other important and unpredictable factors. In this new era, the properties
of peers depend on the time of the day, day of a week, and many external events.
The properties of peers may change in different environments. The properties of
peers are not same in different countries and even between different groups of users.
Introducing super-peers can improve the performance and scalability of many P2P
networks. There is an essential requirement to control the method of selection and

the number of super-peers required to improve searching on a P2P network.

2.7 Summary

This chapter introduced overlay network constraints in unstructured P2P net-
works. There are three classes of overlay in this area; flat, tree-based, and hybrid.
In flat topology, all nodes have a same role, in operating as a client, server, and
router. This kind of topology is robust to the churn rate of nodes due to their
open architecture and self-organizing structure.

In tree-based topology, data are forwarded from a source root to leaf nodes. This
kind of topology cannot take full advantage of the network resources, and the
system can easily become unbalanced due to the bandwidth of the leaf peers not
being utilized. Moreover, the system is vulnerable to peer churn since any middle
peer’s departure will disconnect all descendants of that peer from the content
forwarding tree.

In hybrid topology, peers are divided into two group: ordinary peers and super-

peers. Super-peers act as a server which index all the files of clients and the search
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Table 2.5: Compare important super-peer selections and searching tech-

niques
Super-peer Selection technique Searching technique
OceanStone 1. There is not any algorithm for selec- |1. Rely on Plaxton algorithm.
tion
. Peers maintain a network topology
and routing tables.
KaZaa 1. Select high-capability peers. . Super-peers maintain an index of all
files stored on their client.
2. Selection algorithm is not publicly.
. The search just exchange between
super-peers.
Gnutella 0.6 1. Peers who has acceptable capa- |1. Super-peers maintain an index of all
bilities 20 Kb/s downstream and files stored on their client.
10Kb/s upstream.
. The search just exchange between
super-peers.
eDonkey 1. Selection algorithm is not clear. . Super-peers maintain an index of all
files stored on their client.
. Search perform by super-peers tech-
nique.
Supernode Based Peer- |1. Do not specified the criteria for se- |1. Pastry (DHT).
to-peer file sharing net- lection.
work
2. High bandwidth, enough computa-
tion, cannot join/leave network fre-
quently and have large amount of
storage

is performed by super-peers.

This chapter, reviewed, compared and critiqued the work carried out in the search-

ing of unstructured P2P networks and super-peer selection and search.
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CHAPTER 3
RESEARCH METHODOLOGY

3.1 Introduction

Analytical modeling, simulation and measurement are common tools for evaluat-
ing the performance of techniques that used as methodologies. There are several
factors influencing the selection of evaluation technique, such as life cycle, time
available, amount of developed tools available and the accuracy of the results pro-
duced. This research utilized both analytical studies and simulation techniques to
evaluate the performance of the optimum hop count in flood-based, QuickFlood
and HybridFlood searches in unstructured P2P networks.

The main goal of this chapter is to explain the research methodology that is in-
tended to be applied for the optimum hop count in flood-based, QuickFlood and

HybridFlood searching algorithms.

3.2 An Overview

Unstructured P2P networks are large scale distributed systems, which must be
used for digital information storage and retrieval in this new era. Search or con-
tent location is the main activity which utilizes these applications. Searching in
unstructured P2P network is big challenges in state-of-the-art. An unstructured
P2P network, in contrast with the client server, has no knowledge about resources
locations and network topology. Due to this differentiation the searching tech-
niques employed in the client server would not be suitable for unstructured P2P
networks.

The nature of the flooding search is same as the unstructured P2P network topol-
ogy. Both assume no knowledge about resource locations and network topology.

Thus, flooding offers an attractive method for resource location in dynamic and



evolving unstructured P2P networks. However, flooding incurs large network over-
loads which threaten the system’s scalability.

Due to this drawback, the research introduces two novel hybrid search algorithms
based on the flooding algorithm. These hybrids propose that the search algorithms
are performed in two steps. They utilize flooding in the first step to gain a high
coverage growth rate of the networks. In the second step, one of the proposed algo-
rithms, which is called QuickFlood, used another search technique to obtain a low
level of redundant messages. The next proposal, an algorithm called HybridFlood,
used a super-peer technique to exploit the peer’s heterogeneity, and decrease the
shortcomings of flooding. This research also proposed an optimum hop count to

switch between first step and second step in both algorithms proposed.

3.3 Research Framework

The thesis focuses on improving the searching technique in unstructured P2P net-
works. Accordingly, the following independent steps have been taken to satisfy the
research objectives. The steps include the problem formulation, previous flooding-
based search algorithm implementation and analysis, proposed scheme model, an-
alytical study and experimental simulation, and then a comparison of the results

and performance evaluation. Figure 3.1 presents the research framework.

3.3.1 Problem Formulation

The primary step of study starts with an intensive review of two subjects. The
first review is of existing unstructured P2P search algorithms that have always
used the flooding search algorithm, and the second review is of searching in hybrid
P2P structures. In this step, many papers were studied to collect the required
information about previous solutions, and thus suggest future work. The studied

focused on three main areas:

51



e Concepts and applications of unstructured P2P networks.
e Overlay networks in unstructured and hybrid P2P networks.
e Searching algorithms using flooding schemes in unstructured P2P networks.

Hence, many searching features being designed, include the search performance
such as; scalability, success rate, and latency. Thus, it is hard to find all the
required merits in one scheme. Therefore, at this step the research problem and
assumed scope were identified. This step also stated the shortages and limitations

of the current search algorithms.

3.3.2 Previous Flood-Based Search Algorithm

In this step, two main P2P search algorithms, informed and blind searches, were
investigated. In informed searching [100], a number of node cache information that
related to files or data, therefore, can select "good" neighbors to forward query to.
In general, most informed search methods improve the success rate. However they
produced a lot of update messages in the dynamic and evolving unstructured P2P
environment.

The blind search can be further classified as a blind search for flat topology and

blind search for super-peer topology.

e In blind search for flat topology, nodes have no knowledge about the file or data
location, thus queries are forwarded without any knowledge of its neighbors.
Existing blind methods waste a lot of bandwidth to obtain a high success rate,
such as with flooding search, or have low success rate, such as in a random walk

search.

e There are a few blind searches designed for unstructured P2P networks that
are based on super-peers to control the negative aspects of flooding searches.

All super-peers employed in this category are an ordinary node without any
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Problem formulation for
unstructured P2P network

Benchmarking:
Previous Flooding-Based search algorithms implement
and analysis

Proposed schemes:

QuickFlood HybridFlood

\ 4

Optimum hop
count

A 4

Perform analytical studies and simulation experiments

Metrics evaluation:

Success Rate Redundant Messages Latency

proposed schemes

change No .
parameters gain better
of proposed ' performance

schemes S

benchmarking

End

Figure 3.1: The research frame works
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prominent features. They simply broadcast information between so-called super-
peers and their unknown clients. These systems have significantly controlled the
issues of flooding and have improved search efficiency with a low search cost and

high success rate.

In the super-peer search, the peers are classified as super-peer and ordinary peers or
clients. Super-peers are nodes that operate as a centralized server to a set of clients.
Each super-peer and its clients is called a cluster. Super-peers create a secondary
topology for communication with each other. The advantage of the super-peer
compared with pure flooding is that a super-peer can exploit the heterogeneity in
peers. The advantage of the super-peer compared with a client-server network is
that the super-peer does not have any centralized part. The super-peer act likes a
cross between a pure and client-server network.

The main reason for the super-peer type of solution is the chance to improve
the quality of the search by decreasing or increasing the role of one scheme in
combination. The hybrid technique can improve the performance and scalability

of search techniques in P2P networks.

3.3.3 Proposed Schemes

The main goals of the proposed schemes are to focus on decreasing the number of
redundant messages and increasing the schemes success rate in terms of improving
search efficiency. The structures of the proposed methods are based on combin-
ing two flooding-based algorithms and also combined flooding with a super-peer
technique. This research introduced two novel search algorithms based on the
hybrid structure, called QuickFlood and HybridFlood. Both algorithms use the
proposed optimum hop count method for switching between the two steps. The
methodology of each proposed scheme will be discussed in detail in Chapters 4,

5 and 6. Chapter 4 will study the optimum hop count in flooding-based search
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algorithms, while Chapter 5 and 6 will consider the new algorithms, QuickFlood
and HybridFlood.

3.3.4 Perform Analytical Studies and Simulation Experiments

The proposed methods and benchmark flooding-based algorithms are compared
analytically and experimentally. Many experiments have been conducted in order
to investigate the performance of the proposed algorithms.

To evaluate the proposed methods and compare them with other methods a custom
built simulator is developed to measure metrics such as query success rate, number

of redundant messages, and amount of latency.

3.4 Experiment Environment

To examine and evaluate the performance of the proposed schemes, many resources
and parameters need to be set and identified. This section identified the computer
resources, data collection, parameters setup, and experimental setup that are used

in this research.

3.4.1 Data Collection

This study used Gnutella topologies collected during the first six months of 2001,
which are provided by Clip2 Distributed Search Solution [101]. The research
mainly uses two topology traces, which are listed in Table 3.1, as the samples
are of different topology of size and average degrees of connectivity. The original
name in the table refers to the trace file name used in [101]. The average of the
two-hop neighboring peers indicates the average of the number of peers within two

hops from each peer.
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Table 3.1: The clip2 topology used in simulation experiments !

Topology Name Average Average 2-hop Number of
degree neighbouring peers peers

T1 Graphl 2 3.4 34.1 42822

T2 Graph2 3 4.7 54.8 28895

! The clip2 topology [101].
2 Original name = 052701104502.xml samples are in appendix.
3 Original name = 050301100618.xml samples are in appendix.

3.4.2 Network Model Assumptions and Parameters

To assist the discussion, we presented the assumptions and parameters of the basic
components of a network. The basic components of a network include the network
topology, peers, and query messages. The network topology defines the connec-
tivity between peers. This connectivity is assumed using the Gnutella topologies
collected during the first six month of 2001 by Clip2 Distributed Search Solu-
tion [101].

Peers

Each peer has unique id, which is stored in its P.ID field. There is a field in peers
such as P.CM, which stores file names and documents, which the peer likes to
share. A list of the ids of all immediate neighbors of the peer is saved in P.NL
When a query visits a peer, its ¢d saved in P.TR. The peer’s departure and arrival

are recorded in P.ST. Figure 3.2 presents fields that are assumed in a peer.

P.ID

Identification

P.CM

Cache

P.NI

Neighbors ID

P.TR

Trace Record

P.ST

Status of Peer

. a string cell it
Name of files peer 9

Unique ID of It is one dimensional contains ID of all Status of peer
Peer wants to share array every cell peers related to arrival / departure
contain ID of unique query
a its immediate visited this
neighbors peer
75499 file 1, file 2,... id1, id2,id3, ... True / False

Figure 3.2: Peer’s fields
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e Peer consist of following fields

1. P.ID = unique id, select a unique number
2. P.CM = stores file names and documents, which the peer likes to share
3. P.NI = an array, store the ¢d of all its immediate neighbours

4. P.TR = a string cell, store the id of all peers related to unique query that

have visited this peer

5. P.ST = status of peer: active or inactive

Source Peer

The source peer is a typical peer, which publish a query(s). This kind of peer
creates two extra fields for saving the query(s) and the nosey node(s) information.
Thus when a peer becomes a source it establishes two new fields, called S.TB and
S.NT.

Thus, when a peer begins to publish a query it first selects an array field in S.TB
for each query. In the selected row, it stores a query ¢d and the maximum number
of queries that must be found. It stores them respectively in ID and MAX cells
of the selected row. In the selected row of the S.TB there are also other cells
for storing the total numbers of found, not found, and redundant messages of the
specific query. The second field S.NT' is also an array, which stores information
about nosey nodes. It saves the ¢d and hop count of each nosey node, which is
created by the source peer. Figure 3.3 shows the fields that are assumed in a source
peer. At the same time, it is possible that a source peer acts as an ordinary peer

for other source peers.

e Source peer consist of following fields

1. S.ID = P.ID

2. S.CM = P.CM
57



. S.NI = P.NI
. SSTR = P.TR
. S.8T = P.ST

. S.TB = a table, store the ID, MAX, Find, Not_Find, Redundant of each

query in a separate row

. S.NT = an array, store the ID and HP (hop count) of each nosey node
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Query Message

Query messages have four fields for saving a query’s information. Each query has
a unique ¢d that it has published by the source peer, and it is exactly the same as
S.TB.ID. Each query saves the id of the peer that issued this query. The query
saves its current Time-To-Live value in (). TL. The keyword received from a user

is stored in @Q.KW. Figure 3.4 provides the fields that are assumed in a query.

Q.ID

Identification

Q.IS

Source ID

Q.TL

TTL

Q.KW

Key word

Unique ID of

ID of source peer

TTL value of

Key words query

Query :r;"ast gs::fhed w1 b looking
35499 74321 n file x

Figure 3.4: Query’s fields

e Query message consist of following fields

1. Q.ID = S.TB.ID
2. Q.IS = id of the source peer, that published the query
3. Q.TL = current T'T'L value

4. Q). KW = search keywords received from the user
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Nosey Node

The nosey node of any selected peer is the node among its immediate neighbors
that has the highest number of links. The procedure for selecting nosey nodes is
explained by detail in section 6.4.1, the nosey node acts as a super-peer.

This kind of peer has three extra fields NN.CT, NN.TA, and NN.RD for storing
their client’s information that of the reserved nosey nodes. All indices of files that
clients like to share are saved in the NN.CT field. The ids of clients are stored
in NN.TA, and the id of the reserved nosey nodes is saved in NN.RD. Figure 3.5

presents the fields that are assumed in a nosey node.

e Nosey node consist of following fields

1. NN.ID = P.ID

2. NN.CM = P.CM

3. NN.NI = P.NI

4. NN.TR = P.TR

5. NN.ST = P.ST

6. NN.CT = index of all files its clients like to share
7. NN.TA = an array store of its clients’id

8. NN.RD = store the id of the reserved nosey node (redundancy nosey node)
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3.4.3 Experimental Setup

To perform all evaluations in this study, the research used the data set in section
3.4.1 as base topology. The replication ratio was set to 1/800=0.00125 which
means that for each of 800 nodes one has object. This distribution of objects is
conducted in 20 different random sets and is called the number of placement of
the object. The query is started by 50 different random nodes in each topology
it means number of query. Thus each experiment is conducted under number of
placement X number of query — 1000 different situations. This guarantees the

small standard deviation in our results [57].

3.5 Performance Metrics

In this study, there are three standard types of measurement metrics to be applied

in unstructured P2P networks.
e QQuery success rate (success rate)
e Number of redundant messages

e Number of latency

3.5.1 Query Success Rate

One of the well-known measuring metrics for evaluating the performance of P2P
searches is the query success rate or success rate. In the remainder of this research,
the term success rate will be used instead of query success rate (QSR). The success
rate of each algorithm is the ratio of the number of successful queries over the total

number of queries broadcast by a typical source peer for an object [102].

N
OSR = SR — Success _query (3‘1)
NBroadcasted_query

63



The success rate (SR) is also defined as the probability that a query is successful
[23]|. This metric evaluates the efficiency and quality of the search algorithm. The
major concern of this metric is the end user perspective |103|. As this metric

increases the quality and the efficiency of search improves, and vice versa.

3.5.2 Number of Redundant Messages

When a multiple message with the same message id in each algorithm is sent
to a peer by its multiple neighbors, all except the first message are considered a
redundant message. Unnecessary traffic overhead is produced by a large number of
redundant message forwarding, particularly in a network with a high-connectivity
topology. Redundant messages increase peer processing and network transfer,
without expanding the propagation scope. This metric represents the rate of a
network’s scalability. As the number of redundant message increases the scalability

of the system decreases as it causes increased load and traffic on the network.

3.5.3 Number of Latency

Latency is a measure of the time delay experienced in a network. Latency is the
time from the source sending a packet to the destination and vice versa. Latency
can be measured as the number of rounds of flooding required to discover the target
[60]. This metric is used to measure the search algorithm’s efficiency, because the

enhanced algorithm should effectively limit the search latency.

3.6 Simulator Overview

Performance evaluation is a basic part of research. There are three approaches
to evaluating the performance of a study; theoretical system analysis, test-bed
experiments, and simulation experiments. Although this study used theoretical

system analysis for some of the research, it is infeasible to assess performance
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metrics in this way, due to the system complexity. The deployment of a P2P test-
bed or realistic scale is also impossible, because it requires extremely large amounts
of resource, such as machines and users. Therefore, the approach followed in this
thesis is simulation experiments.

The research used a custom-built P2P simulator which was developed with Java
and MatLab. The simulator followed the cycle model, which evaluated an algo-
rithm is periodic. There is a global loop which controls the flow of time in the
simulator. Every operation of the peers, such as neighbor selection, super-peer
selection, aggregation and routing algorithm, is performed in a cycle time step.
Churn Rate Model

Churn rate is the average portion of peers leaving and joining the network per time
unit. In a dynamic P2P network, peers are continually arriving and departing from
a network. The churn rate can be evaluated with session time. The session times
in P2P networks are varied from six hours to 2 minutes [104,105|. In [27], the mean
session time for 40% of the nodes is less than 4 hours. This research assumed a
mean session time of p = 60 minutes, thus the churn rate per minute is equal
to 1/u = 1.67%. Assuming each time step in the simulation is 5 seconds, hence
there are 12 time steps in a minute so the churn rate is equal to 1.67/12 = 0.14%.

Therefore, the research accepted the churn rate as 0.14% of peers per time step.

3.7 Summary

This chapter has explained the methodologies are used in the performance analysis
and conducted in this thesis, including many of the procedures. The methodolog-
ical steps which are described in this chapter include data set collection; applying
standard flooding searches, optimum hop count in flood-based searches, design of
the QuickFlood and HybridFlood algorithms, and the analytical study of Quick-

Flood and HybridFlood. The data sets which are used in this study and three
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types of measurement metrics are selected to evaluate the results, i.e. query suc-
cess rate, number of redundant messages, and amount of latency. The thesis used

a custom-built simulator to evaluate the performance of the algorithms.
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CHAPTER 4
ANALYTICAL STUDIES AND EXPERIMENTAL EXAMINES FOR
FLOODING-BASED SEARCH ALGORITHMS

4.1 Introduction

In the second chapter we studied many search algorithms for unstructured P2P
networks. The flooding search algorithm with its significant merits is an attractive
method for expanding a dynamic unstructured P2P network. The reputation of
the flooding algorithm is mostly due to its simplicity it eases of implementation
and ease of support. Furthermore, in its unlimited version (or when its TTL is set
to a sufficiently large value) it will always succeed in the search.

The primary study of flooding search algorithm shows two different characteristics,
in terms of low-hops and high-hops. First, in its low-hops it gains a high coverage
growth rate. However, in its high-hops it resulted in an almost non coverage growth
rate. Second, it incurs huge numbers of redundant messages in its high-hops, but
there are few redundant messages in its low-hops.

The main goals of this chapter are: first to analyze analytical studies for flood-
based search algorithms. Second, to examine simulation experiments for flood-

based search algorithms.

4.2 Flooding Algorithm across the Hops

The flooding algorithm is the simplest search scheme and one of the most com-
monly used in P2P networks. The procedure of flooding is conducted in a hop-
by-hop fashion. By increasing the hops, new peers are gained and more messages
generated. A part of these messages are redundant messages. This section investi-
gated the trend of coverage growth rate and redundant messages in flooding. The

summary of all notations used in this research are presented in Table 4.1.



4.2.1 Trend of Coverage Growth Rate

An overlay network as a Random Graph Gy, j (n is the number of vertices and p is
the number of edges). Each vertex or node is represented by a peer, and they are
connected to each other by edges. The degree of each peer represents the number
of its immediate neighbors. Supposing that the graph has n nodes with an average
degree d, and assuming that d is greater than 3, the total messages broadcast from

each peer to hop ¢, as given in [106], is:

t
TMpy; = Y dd-1)07D
=il

By G DMk, d‘_”é = (4.1)

Loop nodes or cyclic paths are groupings of nodes linked together in a ring fashion.
In Gnutella and other internet topology, there are many cyclic paths [107|. If there
are no cyclic paths or loop nodes in the topology then the total number of new

peers visited so far is equal to:

t
TPpy = Y d(d—1)0-
=1

dfd®-R1 Y =1
= — 4.2
TR (4.2)
Thus, the coverage growth rate of messages [16] in hop ¢ is given as:
TP;
CGRp; = 4.3
Ft = Tp (4.3)
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By substituting Equation (4.2) in Equation (4.3) the value of coverage growth rate

becomes:

TP
TP q
Sty d(d— 1)t

T o lgd - 1D (4.4)

CGRp; =

By simplifying Equation (4.4) the coverage growth rate of messages in flooding up

to hop t is given as:

(d— 1))
DRI CREVC)

(@ =N

(d-1)(-1D—1
(d-2)

(d- 1) V(d-2)
(d—1)=1) -1
(d—2)

1
L= @yE

CGRF’t = 1+

= 1+

= W

duy (4.5)

For investigating the trend of the coverage growth rate in each hop assume:

A=d-1 (4.6)

Thus, the value of coverage growth rate in hop ¢ with references to Equation (4.5),

and then yield:

CGRp; = 1+ 1<A _11)
A(t—l)
B (A-1) (A-1alt=1
= 1+ -G =1+ i
A-1)
A=Y g 4 (A —1)Al=D) At —1
- A1) _ 1 A1) (4.7)



The discrete derivative of a function f(n), with respect to n, define as:

Apf(n) = f(n) = f(n—1) (4.8)
Thus, derivative of CGRp; with respect to ¢, lead to:

At(CGRpy) = CGRpy—CGRpy
At—1 A1
A=l 1 At=2 1
(A —1) x (A2 —1) — (AL —1)?
(At=1 — 1) x (At=2 = 1)
A2t—2 e At i At—2 + Te (A2t-2 j= 2At—1 + 1)
(At=1 — 1) x (At-2 - 1)
(At sy 2At—1 + At—2)
(AT 1) x (A2 —)
AT2(A%2 — 244 1)
(A=l — 1) x (At=2 — 1)
A2(A—1)?

(AT 1) x (A2 1) (4.9)

The value of A((CGRpy) is always negative (because A is greater than 1).
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Lemma 4.1 If the derivative Ay(CGRp;) of a discrete function CGRpy satisfies

Ay(CGREyt) <0 (negative) on an interval t € {a,...,b}, then CGRp; is decreas-

ing on {a,...,b}. Proof:

A discrete function CGRpy is said to be decreasing, if for anyb—a =1, CGRpp—

CGRp, <0. OrCGRpp—CGRpp_1 <0 foranyb > 0. Therefor, Ay(CGREpy) <
0. So at any point © = b, if Ay(CGRE,) <0, then CGRp, is said to be decreas-

mng.

Hence, it can be shown as:
OGRFQ > OGRF;), > CGRFA > CGRF’5 S (4.10)

Therefore, CGRp; is always in descending order. By increasing ¢ hops, the value
of CGRp; decreases. Thus the maximum value of CGRp; is presented in the
second hop. Therefore by increasing the hops ¢, the value of the coverage growth

rate decreases.

4.2.2 Trend of Redundant Messages

The redundant messages in each topology are generated by loop nodes. A loop
is a grouping of nodes linked together in a ring fashion. In Gnutella and other
Internet topologies, there are too many loop nodes in high-hops [16].

Assuming that there is a loop in each hop of the defined topology and that the

loop started from second hop. Thus the number of new peers in hop two becomes:

Ppy=d(d—-1)%*-1 (4.11)
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By considering a loop, the number of new peers in the third hop is equal to:

Ppz = [(d(d-1)?-1)(d-1)] -1

= [(dd-13-(d-1)]-1 (4.12)
The number of new peers in the fourth hop by considering a loop is:

Ppy = [(dd-1°-(@d-1)-D)d-1)=1

= [(dd-1)*—d-1)2—-(d—=1)]-1 (4.13)

By induction, the number of new peers visited in hop ¢ becomes:

[\)

t_
Ppy=dd-1)' =) (d=1) (4.14)

i

I
=)

Obviously, there are more loops in each hop topology. This is the minimum number
of loops that is being considered here. The number of redundant messages can be
defined as the difference between the number of messages and the number of new
peers visited in hop ¢.

Rpi=Mps — Ppy (4.15)

Thus the redundant messages generated in hop t 4 1 is equal to:

t—2
Rpy = d(d—1)" —[d(d—1)' = (d—1)]
1=0
t—2 _
S (d-1)tt -1
= d—1)" = ( 4.1
1=0
By substituting Equation (4.6) in Equation (4.16), leads to:
Alt=1) _q
= - 4.1
Rpy 11 (4.17)
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The derivative of Rp; with respect to ¢, refer to Equation (4.8) can be shown as:

AtRpy = Rpy— Rpi
At—l -1 At—2 -1

A-1  A-1
B At—l_l_At—2+1
N A—1
 APZA-)
- A—-1
— g 2 (4.18)

The value of Equation (4.18) is always positive.

Lemma 4.2 If the derivative A¢(Rp;) of a discrete function R satisfies Ay(Rpy) >
0 (positive) on an interval t € {a,...,b}, then Rp; is increasing on {a,...,b}.
Proof:

A discrete function Ry is said to be increasing, if for anyb—a =1, Rp,—Rpq >

0. Or Rpp — Rpp—1 > 0 for any b > 0. Therefor, Ay(Rpy) > 0. So at any point

r=0b, if Ag(Rpy) >0, then Ry, is said to be increasing.

Thus the function is always in ascending order. By increasing the value of ¢ (hops)
the value of Rp; increases. Hence, the minimum value of Rp; is visited in the

second hop. Therefore, it can be shown as:
RF72 < RF73 < RF,4 < RF75 < - (4.19)

The percentage of redundant messages in hop ¢ based on seven hops is equal to:

R
L w100 (4.20)

Zi?:l(RF,i)

We have examined these facts with our data sets of T1 and T2 topology for 1000

random nodes. Figure 4.1 presents coverage growth rate in each hop based on
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Equation (4.3) and Figure 4.2 shows the number of redundant messages in each
hop. To show the up trend of redundant message in each hop the Figure 4.3
presents the percentage of redundant messages in each hop based on Equation

(4.20). Observations have confirmed the analytical results from Equations (4.10),

14

HT1 ET2
12

10

Coverage Growth rate

2 3 4 5 6 7 8

Hops

Figure 4.1: Compare the coverage growth rate in two topologies

(4.16) and (4.19). In addition, the analytical study identified three important

points:

1. The coverage growth rate of messages for flooding in defined topologies has
a maximum value in the second hop, by increasing the hops the value of

coverage growth rate decreases.

2. The redundant messages for flooding in the same topologies at low-hops are

very low but by increasing hops their values increase exponentially.

3. The trend in the coverage growth rate and redundant messages in each topol-
ogy is in reverse order. As far as one is high in a hop the other is low in the

same hop and vice versa.
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Figure 4.2: Compare the number of redundant messages in each hop of
two topologies
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Figure 4.3: Compare the percentage of redundant messages in two
topologies

4.3 Proposed Performance Metric

The most important metrics, which can evaluate the performance of the search
algorithms, is the number of redundant messages and coverage growth rate of
messages that are generated with a search algorithm. As the number of redundant
messages increases the scalability of the search algorithm decreases. Thus, the

search algorithms with low scalability cannot be employed in dynamic and evolving
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unstructured P2P networks. A search algorithm with low coverage is not reliable
and cannot locate rare objects. Thus, the performance of a search algorithm with
large coverage is more efficient than one with low coverage.

Inspired by the reverse trend in coverage growth rate and redundant messages in
flooding schemes, we propose a new metric, which called the critical metric. The
critical metric combines the coverage growth rate and redundant messages in each
hop of the flood-based algorithms to present the state of the search performance at
the same hop. Therefore the new metric can evaluate the performance of different

algorithms and also hybrid flood-based algorithms.

4.3.1 Critical Metric
Here is the description of critical matric. The definition is:

Definition 4.1 (Critical Metric C My ) Let x represent any algorithm in flood-
base category and t be the number of hop in such a algorithm. Let Ryt and CGRy 4
be respectively the number of redundant message and number of coverage growth
rate in any x flood-based algorithm at hop t. For any x algorithm in flood-base

category the critical metric is defined as:

Rxﬂf

GV 82 8l
Fi | B

(4.21)

This metric is valid for low-hops, because in high-hops the value of coverage growth
rate becomes close to 0. Obviously, if as a consequence the amount of coverage
growth rate becomes zero, the value of the critical metric tends to infinity, and
is hence not valid. The value of the critical metric in low-hops is always greater
than zero.

Critical Metric discussion

Critical metric represents the state of the redundant messages and coverage growth

rate at each hop of a flood-based algorithm. Thus it can evaluate the performance
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of a search algorithm in a hop. Here the research evaluated the critical metric in
two ranges of value: when it is less than one and then when it is greater than one.
First when the value of the critical metric is less than one: in this state the amount
of redundant messages must be less than the coverage growth rates, hence when
the number of redundant message is low and the coverage growth is high, the
search algorithm has an acceptable performance.

Second, when the value of the critical metric is greater than one; in this situation
the amount of redundant messages is greater than the coverage growth rate, thus
when the amount of redundant messages is the high and coverage growth rate is
low, the search algorithm has a low performance.

Consequently, this characteristic of the critical metric is a suitable tool for com-
paring the performance of flood-based search algorithms. It is also a proper tool to
estimate the optimum threshold point of hops in order to switch from one algorithm
to the other in a hybrid search algorithm that uses flood-based algorithms. The
following sections first calculate critical metric for flood-based algorithms. The
following sections first calculate the critical metric for flood-based algorithms, and

then compare and evaluate them.

4.3.2 Critical Metrics in Flood-Based Algorithms

This section calculated the values of critical metrics for flood-based search algo-
rithms. Flood-based search algorithms include flooding, and other search algo-
rithms used flooding as a base in its algorithms. The main goal of flood-based
algorithms is to control the issues caused by flooding to improve the performance
of a search.

Flooding

The flooding search algorithm performs the following: the source of the search

sends the requested messages to all its neighbors, which in turn propagate the
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message to their own neighbors except for the neighbor from which they have

received the message and so on. Flooding is unrestricted in the sense that there is

no constraint on the number of messages generated by the search request.

To calculate the critical metric in flooding, the coverage growth rate and redundant

messages are calculated in detail. As given in Equation (4.7) the coverage growth

rate of flooding is equal to:

At —1

Equation (4.22) can be presented as:

2y |l
Alt=1) 1
At 1

CGRp,

At=1) _1 A1) _

Equation (4.23) shows:
At

The right side of Equation (4.24) can be presented as:

At At
AT AL

=A

Equations (4.24) and (4.25) lead to:

CGRpy > A

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

Equation (4.26) presents the minimum value of coverage growth rate in hop ¢. By

assumption, the average degrees of nodes are always greater than 3 (d > 3). Thus

the value of the coverage growth rate in hop ¢ is greater than A. As a result, the
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value of the redundant messages as given in Equation (4.17) is equal to:

A=) g
Rp = —F7— 4.2
Fit 11 (4.27)
The right hand side of Equation (4.27) can be shown as:
Alt=1) 1
<Al 4.2
11 < (4.28)

By considering Equations (4.27) and (4.28) the maximum value of redundant mes-

sages in hop t can be presented as:
Rpy < A=Y (4.29)

Equation (4.29) shows that the values of redundant messages in the first two hops
of flooding are negligible, thus it confirms the result in relation to Equation(4.19).
By substituting the results of Equations (4.26) and (4.29) in Equation (4.21) the
critical metric for the flooding algorithm under the most pessimistic condition
where the coverage growth rate is minimum and the amount of redundant messages

is maximum is equal to:

= = A(=2) (4.30)

Assume that the Time-To-Live (TTL) value used in flooding is k, thus the total
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critical metric for all hops up to k is equal to:

TCMpy,

Expanding Ring

k k
S oMp; =AY
1=1 1=1

AF 1
A2 _ A

(4.31)

The expanding ring is successive flooding; assuming that the T7T'L value in ex-

panding ring started from 1 and is incremented by 1 up to [, where [ is less than

k and greater than 2. Thus the critical metric for the expanding ring from 1 to [

is equal to:

UTH
TCMgg;=>»_ Y CMpg;

(4.32)
t=11i=1

By substituting the Equation (4.31) in Equation (4.32) the value of the critical

metric for the expanding ring becomes:

TCMER,Z

Z Al —1
y, I
11 4
l
Y AH)-Y1
t=1 t=1
A2 _ A
Al+1) 4 I
A—1
A2_ A
A+D A _j1A-1
(A-1) (4.33)
(A2 - A)(A—1)
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Blocking Expanding Ring

The blocking expanding ring is an extended version of the expanding ring, which is
not rebroadcast from source node, but rather in each new round it is rebroadcast
from the nodes of the last attempts. Hence, its critical metric for (I < k) referring

to Equation (4.30) is equal to:
l
TCMpgr; = »_ CMp;
1=1

l
— Z Ai—2)
i=1

Al —1q
Bl (4.34)

Random Walker

Random walker is modified version of flooding. It is a Probabilistic Limit-Based
Flooding (PLBF) type, which forwards a query message (walker) to only one
randomly chosen neighbour. In the Random walker, the average degree of d is
equal to 2. Because the query messages from each node are only forwarded to one
randomly selected node. The value of the critical metric in references to Equation

(4.30) is equal to:

l
TCMpyy =y A2 (4.35)
=2

Let A =d — 1 thus the value of A becomes A = 2 — 1 = 1. Therefore, the total

critical metric for random walk becomes:
TCMpy; = Y A2

= Y 1= (4.36)

Teeming
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Modified Breadth-First-Search or teeming is also a Probabilistic Limit-Based Flood-
ing (PLBF) type. There is a fixed probability denoted by 6 for selecting a particular
neighbors. Let d; denote the number of nodes in hop ¢, and dp the average degree
in the teeming algorithm. At each hop, a node propagates an inquiry message to

0 x d; of its neighbors. Thus, dp is equal to:

n
Zdi x 0
1=1

7 4.
T - (4.37)

Thus, given by Equation (4.37) the average degree in teeming is equal to:

n n
Zdixe dx Zdi
e — L - g (4.38)
n n

Let Ap = dp — 0 thus, the critical metric for teeming referring to Equation (4.30)

is equal to: )
TOMy; =Y (Ar)i—2 (4.39)
1=2
LA EdUda
= B0 X d et
= 6(d-1)
= OxA (4.40)

Considering Equations (4.38), (4.6) and (4.40) the value of A7 becomes equal to

82



0 x A. By substituting Ap with § x A Equation (4.38) can be shown as:

TCMyp; = (Ag)(i=2)

M-

@
~ I
I\

= > Axol? (4.41)

N
Il
)

The result shows that the value of critical metric in the teeming algorithm in
each hop 1 is 0(=2) of the critical metric in the flooding algorithm for the same

algorithm.

4.3.3 Evaluation of Critical Metrics in Flood-Based Algorithms

This section evaluates the critical metrics of flood-based searching algorithms in
order to compare the performance of these algorithms. To perform this evalua-
tion the bench-mark assumed is the value of the critical metric in the flooding

algorithm.
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Comparing the Performance of Expanding ring
The values of the critical metric in standard flooding for k£ hops and the expanding
ring for [ hops are respectively:

AK 1

ALY A A =1)
(A2 = A)(A—1)

TCMpR; = (4.43)

By default K is almost greater than [ because the number of hops in flooding are
always greater than the number of hops in the expanding ring thus K > [. To

compare Equations (4.42) and (4.43):

TCMgr; # TCMpy,
AUED SN _ AR 1) AKX N

(AZ— A)(A—1) AZ_ A
AGHD _ A g4 11) AK—1XA—1
(A2 — A)(A—1) A2 A A-1

AGD BN 1) 2 (AK LA - 1)

R AN Ly 2 @B A (A— 1) (4.44)

Given that | < K:

Al ~ (AKy (A —1) (4.45)

By deleting both sides of Equation (4.45) from Equation (4.44):
—A-l(A-1)#—-(A-1) (4.46)
Therefore, it is clear that (A —1) < A+1(A —1) and it proves that the right side

of Equation (4.44) is greater than the left side. Hence, it can be concluded the
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critical metric in flooding are almost greater than in the expanding ring.

TCMER,Z < TCMF’k (447)

Therefore, the expanding ring algorithm is more efficient than the flooding algo-
rithm.
Comparing the Performance of Blocking Expanding Ring

The values of the critical metric in expanding ring for [ hops is equal to:

AUHD — 4 —1(A-1)

TCM = 4.48
For the blocking expanding ring [ hops is equal to:
TCM _4ay! (4.49)
The comparison between equations (4.48) and (4.49) produces:
TCMpgr) # TCMEgpg
A1 , ALY ST 41
A2 -1 (A2 - A)(A-1)
Al—1 LA-1 , AUFY A A —1)
AZ 17 A-1 (A2 — A)(A—1)
A1) xA-1) # A _A_ja—-1)
(A Ay Al —1) % AUD A4 ja—1)
AFL A Al 2 AD 4 a4
—Al1 £ 1A (4.50)

For [ greater than 3 the value of (—A! + 1) is less than (—IA 4 ). Thus, as far as
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[ is greater than 3 the critical metric in blocking expanding rings is less than the
critical metric of the expanding ring. Thus, for hops greater than 3 the blocking

expanding rings are more efficient than expanding rings.

TCMBER,I < TCMER,Z (4.51)

The critical metrics shows that for hops less than three there is no difference be-
tween expanding ring and blocking expanding rings, since there are few redundant
messages in low-hops.

Comparing the Performance of Random Walk

As mentioned in the description of the random walker the average degree d is two,
thus the critical metric of the random walker as shown before in Equation (4.36)
is equal to the number of hops it expands. Therefore, this algorithm has often no
redundant messages as well as minimum coverage growth rate. This algorithm is
more efficient than its predecessors.

Comparing the Performance of Teeming

The teeming algorithm is the adopted version of a random walker with a fixed
probability of chosen nodes at each step. As proved by Equation (4.41) its critical
metric is dependent on the value of fixed probability 6. Its critical metric is equal

to 0172 times the critical metric of flooding with same hop count.

4.4 Analytical Results

Our analytical study in this stage showed that with a TLBF methods the crit-
ical metric decreases linearly refer to Equations (4.46) and (4.50) for expanding
ring and blocking expanding ring. However, refer to Equations (4.36) and (4.41)
in PLBF methods for random walker and teeming it decreases exponentially. It
proved that PLBF has a better performance compared to TLBF. The main draw-

back of the PLBF type is they incur high latency.
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Therefore, by considering Equations (4.36), (4.41), (4.47), and (4.51) it can be

concluded:

TCMF’Z > TCMER,Z > TCMBER,Z > TCMRWZ > TCMTJ (4.52)

This evaluation proved for the same conditions the critical metrics in PLBF meth-

ods are less than TLBF methods.

4.5 Experimental Results

To confirm the analytical study, we used our data set in section 3.4.1 as the base
topologies, and followed the set of experiments as detailed in the experimental
setup section 3.4.3 to measure the query success rate, number of redundant mes-
sages, and amount of latency. The evaluation compared the performance of flood-
ing, Expanding Ring (ER), Blocking Expanding Ring (BER) and teeming algo-
rithms with predefined metrics. The value of probability € in the teeming algorithm
is set to 0.3 or 30% (Teeming 30).

Teeming algorithm is modified version of random walk. Random walk algorithm
forward a message (walker) to only one randomly chosen neighbours. While teem-
ing at each step forward message to subset of its neighbours. The value of 6 shows
the number of nodes can be chosen in each step of teeming. Obviously the mini-
mum number of nodes can participate in teeming is one. Thus as far as we assume
the average degree of node (d) is greater than three, so the minimum number of
node can find by 6 = 0.30.

Figure 4.4 and Table 4.2 present the trend of the redundant messages for all al-
gorithms. They show that the teeming algorithm reduces redundant messages by
almost 90% compared to flooding. It shows that the blocking expanding ring and
expanding ring reduce the redundant messages by over 70% compared to flooding.

The experiment showed that the trends of the decrease in the expanding ring
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Figure 4.4: Number of redundant messages for each algorithm at dif-
ferent topologies

and blocking expanding ring are close to each other, but that by applying the
teeming algorithm this trend decreases further. Thus, as expected, teeming has
dramatically decreased the number of redundant messages.

The trend in the success rate for each algorithm in different topologies is presented
in Figure 4.5 and Table 4.3. As expected, the expending ring and blocking expand-
ing ring improved the success rate by 2.0 and 2.7 times compared with flooding, the
reason refers to their limitation of the 77'L values. The result illustrates the exact
difference between the expanding ring and blocking expanding ring algorithms.
The expanding ring collected many duplicate messages because it must start from
a source peer in each round of processing, whereas the blocking expanding ring
does not follow this procedure.

The reflection of this difference is evident in their success rate results, thus the
blocking expanding ring achieves a better success rate than the expanding ring. On
average the teeming algorithm achieves a success rate more than four times that
of flooding. The main reason is that its algorithm refers to our analytical anal-

ysis exponentially reduced redundant messages compared with flooding Equation
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Figure 4.5: Success Rate for each algorithm at different topologies

(4.41).

The average amounts of latency in each algorithm for the different topologies
are presented in Figure 4.6 and Table 4.4. Latency in the expanding ring and
blocking expanding ring decrease by about 70%. The results show that the blocking
expanding ring is more efficient than the expanding ring. As expected, the latency
in teeming is not significant and shows an average decreases of about 37%.

The reason behind this result is that teeming follows the procedure of the random

algorithm. The random algorithm incurs more latency than the others.

4.6 Summary

The chapter began with an analytical study of the flooding search in P2P un-
structured networks. The research analyzes the trend in coverage growth rate and
redundant messages across the hops. The study proved that the network coverage
growth rate in low-hops is much higher than in high-hops, and in contrast the ma-
jority of redundant messages are generated in high-hops. The idea was examined

and proven for two Internet topologies, T1 and T2. We were then interested in
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Figure 4.6: Number of latency for each algorithm at different topologies

comparing the flooding-based searches for indications of their shortcomings and
strengths. For comparing the algorithms, the thesis defined a new custom-built
metric, which is called the critical metric. The critical metric is the result of the
coverage growth rate over the redundant messages in each hop. When the value
of the critical metric is low the search algorithm has a high performance, and vice
versa. The reason is that when the critical metric is low its coverage is high and
it amount of redundant messages is low. Thus when a search algorithm gains
more coverage and a low number of redundant messages it is obviously more effi-
cient than one which has low coverage and more redundant messages. The study
classified flooding-based searches into three classes; T"T'L Limited-Based Flooding
(TLBF), Probability Limited-Based Flooding (PLBF), and Hybrid Limited-Based
Flooding (HLBF). The comparison proves that PLBF performs better than the
others. In the meantime we examined all the algorithms discussed and proved
analytical studies. The experimental results show that the teeming algorithm has
a better performance than the others. The teeming algorithm belongs to class of

PLBF.
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Table 4.1: Notations and description used in the research

Symbols Description

n Number of vertices or nodes or peers in graph

d Average degree of nodes, (assumed that d > 3)

nbr neighbor

Gnp Random graph G with n vertices and p edges

t Number of hops (t > 1)

My 4 Number of messages propagate in (v algorithm) at hop t

P,y Number of new peer visited in (z algorithm) at hop t

Ry Number of redundant messages in (x algorithm) at hop t

TMy+ Total number of messages propagate in (z algorithm) up to hop t
TMyp Total number of messages propagate in (z algorithm) between hop h until hop t
TP, Total Number of new peer visited in (x algorithm) up to hop t
TR, Total number of redundant messages in (r algorithm) up to hop t
CGR,y Coverage growth rate in (z algorithm) at hop t

CMy Critical metric in (z algorithm) at hop t

TCM,, Total critical metric in (z algorithm) up to hop t

F Flooding algorithm

ER Expanding Ring algorithm

BER Blocking Ezpanding Ring algorithm

RW Random Walk algorithm

LI Local Indices algorithm

T Teeming algorithm

T 6 Teeming algorithm with fix 0 probability

QSR Query Success Rate

SR Success Rate

QF 0 QuickFlood algorithm with h hop flooding and 6 probability

HFYy, HybridFlood algorithm with h hop flooding and n redundancy nosey nodes
TTL Time To Live

TTLgp TTL in first step

TTLg TTL in second step

Table 4.2: The reduced percentages of redundant messages for each
algorithm compare with flooding at different topologies (%)

Topology
Algorithm T1 T2 Average
ExpandingRing 66 76 71
BlockingExpandingRing 73 79 76
Teeming 30 83 94 88
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Table 4.3: The increased times of success rate for each algorithm com-
pare with flooding at different topologies

Topology
Algorithm T1 T2 Average
EzpandingRing il % 2.3 2.0
BlockingExpandingRing 2.4 3.0 2.7
Teeming 30 2.4 5.6 4.1

Table 4.4: The reduced percentages of number of latencies for each
algorithm compare with flooding at different topologies (%)

Topology
Algorithm T1 T2 Average
EzpandingRing 63 73 68
BlockingExpandingRing 72 78 75
Teeming 30 14 60 73
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CHAPTER 5
PROPOSED QUICKFLOOD SEARCH ALGORITHM

5.1 Introduction

Efficient search schemes are the main interest for complete and appropriate mate-
rials searching. A P2P system from a search aspect can be classified as structured,
unstructured or hybrid.

Structured systems use classical client-server architecture. In this strategy, the
locations of the resources that generate the search results for a query are fixed
and known to the users as files or data that are stored in a centralized repository.
Although this architecture is the fastest search mechanism, it is vulnerable to a
single point of failure and they require tight controls on the data’s location and
the topology of the network.

Unstructured systems utilize blind and informed search algorithms. The blind
search algorithms use a flooding algorithm as the basic scheme in their strat-
egy. Flooding algorithms, although they have significant merits, produces a huge
amount of unnecessary redundant messages, which cause the system to be ineffi-
cient and unsalable. The informed search exploits some kind of routing informa-
tion, which is saved in the peers, about forwarding the queries to suitable peers.
Although the informed search offers a faster response time than blind search algo-
rithms, they increase the cost of the search and the overhead of maintaining the
indexes.

Hybrid strategies try to combine the advantages offered by the different architec-
ture types to boost the overall system performance. This type of strategy can
combine two or more search algorithms. These algorithms may include a struc-
tured strategy or unstructured architecture, or even both strategies. The main
challenge for a hybrid strategy is to find the optimum formula for the combination

of its original searching algorithms. The formula should present the best threshold



points of hops to switch from one algorithm to other. This chapter proposed a

hybrid search algorithm to prove two objectives.
e The hybrid search algorithm gains better results for unstructured P2P networks.

e The critical metric can determine the best threshold to switch from one algo-

rithm to another in a hybrid search.

The proposed search algorithm combines two flooding-based search algorithms to
benefit from their merits and to limit their drawbacks. The algorithm used flooding

and teeming search algorithms.

5.2 Proposed QuickFlood Model

QuickFlood has been designed in two steps: in the first step it starts with a flooding
algorithm with a limited number of hops to benefit from the high coverage growth
rate of messages and low number of redundant messages. Whenever flooding starts
to generate a high amount of redundant messages it switches from flooding to a
teeming algorithm to benefit from the low number of redundant messages generated
in teeming algorithms.

The main objective here is to find an optimum threshold of hops for the switch

from flooding to teeming.

5.3 First Step of Algorithm

QuickFlood is started by source nodes such as S;, where i = {1,2,3,....k}, and
actions flooding by the limiting number of the Time-To-Live value, TT' L. The
typical source node S; sends the requested query message to all its immediate
neighbors, which, in turn, forward the message to all their neighbors except the
message sender. The query reaches its end when either its T7T'L becomes zero, or

because it becomes a redundant message or the number of found messages reaches
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its maximum. If the procedure is ended by latter case (number of found messages
is sufficient) the search is finished. Otherwise when TT'Lr = 0 those peers reached
on last hop of this step become last peers of the first step {n;i,n2,...,n;%}, and
thus the second step of search begins with these peers.

It is assumed that the source peer S}, publishes a query message Q,, with a TTL
value for querying equal to TT'Lr and the maximum number of found queries is
set to MAX.

Figure 5.1 illustrates the flooding algorithm when the query message encounters a

typical peer, and Figure 5.2 presents the first step procedure of QuickFlood.

Figure 5.1: Pseudo code Flooding(Sy, Qm, TTLp, MAX)

Qm-TTL < TTLp;
Peer < all nbr of Sg;
while Q,,.TTL > 0 do
Qm-ITTL ¢ Q. TTL — 1;
NewPeer < 0; {Initialize NewPeer as an empty set}
{For each neighbor}
for V P; € Peers do
if Q. ID € S;..TB.ID then
{ Peer visited before}
Redundant < Redundant + 1;
else
P, TR+ P, TRUQn,.1D;
{Add the id of query to trace array of peer then check its content}
if Q. KM € P;.CM then
Find < Find + 1;
if Find > M AX then
‘ Return;
end
else
| Not_Find < Not_Find +1;
end
NewPeer <— NewPeer U P;.I1D; {Add nbrs of P, to NewPeer}
end
end
Peer <— NewPeer; {Assign NewPeer to Peer for next run}
end
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Source node S;  First neighbors Ny Ith neighbors njy

Path and connection —p

Figure 5.2: First step of QuickFlood procedure

5.4 Second Step Description

In this step, QuickFlood begins with the last peers visited in the first step {n;1,n;o, ..., njr}-
These peers are dispersed uniformly across the overlay network. In this step, every

last peer acts as in teeming algorithm with a fixed probability of 6.

Nodes Selection

In a teeming algorithm each node selects 6 subset of its immediate neighbors for
searching. The main assumption is that if the subset becomes less than one it has
selected at least one neighbor for searching. Thus every node in the second step

selects at least one node for searching. Figure 5.3 shows the procedure for one

selected node in the second step of QuickFlood.
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Figure 5.3: Second step of QuickFlood procedure

5.5 Second Step Algorithm

When queries reach the last nodes of the first step, and the maximum number
of found is not satisfied, the search process of the first step has finished. The
QuickFlood scheme marks these nodes as the starting nodes for the second step
of the search.

The search procedure in this step initiates by replacing the Time-To-Live value
of each query in marked peers with a second Time-To-Live value Q. TL =TT Lg
and begins the second step of the search algorithm. The search then continues
simultaneously from this group of peers that are randomly and uniformly located
in the P2P network. This algorithm is explained in Figure 5.4. It continues until

its Time-To-Live value is valid, or obtains enough number of found messages.
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5.6 Analytical Studies

This section analytically evaluated the performance of the proposed search algo-
rithm by using the critical metric.

The critical metric in the QuickFlood algorithm is a combination of the critical
metrics from flooding and teeming. It assumes that the coverage growth rate in
flooding at hop ¢ is equal to K and the number of redundant message in flooding
at hop t is equal to L.

Assumptions:
e Coverage growth rate in hop t for flooding is: CGRp; = K
e Number of redundant messages in hop t for flooding is: Rp; = L

Thus the critical metric at hop t for flooding can be shown as:

L

Optimum Hop Count to Switch between Two Steps
By Equation (4.41) the critical metric for teeming in hop ¢ with a fixed probability
of 0 is equal to:

L
CMT,QJ = %e(t 2) (52)

The critical metric in QuickFlood is a combinations of the critical metric in flood-
ing and teeming. Thus the critical metric for QuickFlood can be shown as:
L L 9 L

(t-2) ;

Hence, since 6 is less than one (because it is a probability) the value of %9 is
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Figure 5.4: Pseudo code QuickFlood Second Step(Sk,Qm,TTLs, MAX,LN,0)

Sy ¢ is source peer;

Qm < is defult query message;

Qm.TL < TTLg;{Assign TTL value of query as TTL value for second step}
4 MAX < is mazimum number of requested query;

WL N =

5 LN < is a set contain all last nodes remined from first step;

6 0 < is a rate of selecting node in second step;

7 while Q,,.TL > 0 do

8 Temp array < 0; {Initialize an empty set or array}
9 Qm-TL <+ Qn.TL—1;

10 {ni; is a typical node in LN}

11 {For each n;; do}

12 for V n;; € LN do

13 if Qm.ID € n;;.TR then

14 {n;; visited before}

15 Redundant < Redundant + 1;

16 else

17 { Check the content of n;; }

18 if Qm KW € n;;.CM then

19 Find < Find + 1;

20 if Find > MAX then

21 ‘ Return;

22 end

23 else

24 ‘ Not Find < Not Find + 1;

25 end

26 end

27 {Procedure selecting new nodes for next turn. }

28 {This Procedure performs in two steps.}

29 { 1-Find number of nodes according to 6 and number of nbrs of n;; }

30 Number _of mnode < round(0 X number of nbrs of n;;);

31 if Number of node <1 then

32 ‘ Number of mnode < 1;

33 end

34 {2-Choose Number_of node selected nodes randomly form neighbors of n;; }

35 14 1;

36 Node Selected < 0; {Assign as an emply set or array }

37 for © < Number of node do

38 Node Selected < Node Selected U select a node uniformly from nbrs of
nij;

39 end

40 Temp array < Temp array U Node__selected,

41 end

42 LN < Temp_array;

43 end 99




not less than % for t =1, and 2. By considering 6 < 1:

02 = Lot = L > L if t=1
Lp2-2) = Lg0) = L?fo =% if t=2
L g2 _ Lp(3-2) = Lp() = Lxbt _ L if t=3
Lg(-2) = Lo — Lx8” o Lo(1) i 4—4

Thus it is not rational to use the teeming algorithm in hops 1, and 2 in this
combination. But for ¢ = 2 the value of %«9“‘2) starts to decrease compared to
% and the rate of decrease depends on the value of 6.

So the optimum threshold for switching from flooding to teeming is when ¢t = 2.
Therefore, the best combination for QuickFlood is to use the flooding algorithm
in the first two hops, and the teeming algorithm for the rest of the hops.

The critical metric in QuickFlood is equal to:

CMgrot = CRpt+CRrgy
i At—2 n (A « 0)75—2

= AT%(146177) (5.4)
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Here we calculate the value of critical metric for t = 3, 4, and 5.

;

A272(1 40272 = A0+ 0% if t=2
A2 4032y = A1 +0Y if t=3
CMgrgy=A"2(1+6"72) = A4-2(1 1 94-2) = A2(1 4+ 62)  if t—4

A2 4002)=A3(1+60%)  if t=5

The results show the value of critical metric in t = 2 is minimum compare with
t > 2. Thus, the optimum threshold for switching from flooding to teeming is

when ¢ = 2, because for ¢ > 2 the value of critical metric increases exponentially.

5.7 Experimental Results

The goal of the evaluation is to study the performance of QuickFlood compared
with flooding, expanding ring, blocking expanding ring, and teeming algorithms.
The proposed algorithm is implemented in two steps. To perform this evaluation
we have used the same experimental setup and metrics, which are explained in
section 4.5. In the first step, M hops are performed with the flooding algorithm,
and in the second step it continues /N hops with the teeming algorithm by a fixed
probability of 6.

Hence, there is an interesting question which must be investigated in the (M and

N) arrangement.

e What is the effect of increasing or decreasing M and N on the performance of

QuickFlood?

In the previous studies include analytically, and experimentally we have proven the

blocking expanding ring algorithm produces better results than standard flooding
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Figure 5.5: Compare the number of redundant messages of QuickFlood
with different arrangements by other algorithms at different topologies

and expanding ring algorithms. Thus in the remainder of the experiments we
compare the results with the blocking expanding ring.

Table 5.1 and Figure 5.5 compare the number of redundant messages produced un-
der the same conditions for blocking expanding ring (BER), teeming and different
combinations of hops for the QuickFlood algorithm. QuickFlood has the lowest
number of redundant messages compared with the other algorithms. It proved the
analytical results that QuickFlood has the best arrangement in hop three. The
experiments prove that by increasing the number of hops in flooding the number
of redundant messages increases. The main reason is that flooding in these hops
starts to produce more redundant messages.

Table 5.1: The reduced percentages of redundant messages for each
algorithm compare with BER algorithm at different topologies (%)

Topology T1 To

Algorithm Average
Teeming 30 37 71 54
QF 2 30 47 7 62
QREF 3 30 58 82 70
QF 4 30 49 52 51

Table 5.2 and Figure 5.6 show the success rate from the blocking expanding ring,
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Figure 5.6: Compare the values of success rate of QuickFlood with
different arrangements by other algorithms at different topologies

teeming, and different combinations of QuickFlood. The QuickFlood algorithms
with (h = 3 and 6 = 0.3) achieve better success rates compared with others, and
has on average a 1.9 times success rate compared with the blocking expanding ring.
It proves the analytical results that this algorithm achieves the best performance
in the combination of four hops flooding and then the rest teeming.

Table 5.2: The increased times of success rate for each algorithm com-
pare with BER algorithm at different topologies

Topology
Algorithm &1 i1 T2 Average
Teeming 30 i3 "o 1.5
QF 2 30 il. 8 2.1 1.7
QF 3 30 1.5 24 1.9
QF 4 30 1.4 1.6 1.5

Table 5.3 and Figure 5.7 presented the amount of latency for the different algo-
rithms. QuickFlood with the arrangement (hop = 3 and # = 0.3 ) achieves a
better result than the teeming algorithms. The randomly chosen nodes have more
latencies than the other algorithms, because there are many high performing nodes
that may be omitted, and thus it took more time to capture the target nodes. The

results show that the QuickFlood by three hops of flooding gained better results
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Figure 5.7: Compare the number of latency of QuickFlood with different
arrangements by other algorithms at different topologies

than QuickFlood using 2 hops and teeming.

Table 5.3: The reduced percentages of number of latencies for each
algorithm compare with BER algorithm at different topologies (%)

Topolo
Algorithm P 1 T2 Average
Teeming 30 -205 -79 -142
QEF 2 30 38 57 47
QRF 3 30 19 A7 33
QRF 4 30 -53 32 -11

5.8 Summary

This chapter introduced a new searching algorithm, called QuickFlood. Quick-
Flood combined two flood-based search algorithms (flooding and teeming) to ben-
efit from their merits and to limit their drawbacks. QuickFlood follows a hybrid
search discipline. Flooding in low-hops has fewer redundant messages and a large
coverage growth rate. Thus the algorithm in the first step used flooding to achieve
a large coverage growth rate in the network and in the meantime a low number

of redundant messages. Whenever flooding starts to generate a high volume of re-
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dundant messages it switches from the flooding to the teeming algorithm to benefit
from its merits. The teeming algorithm produces fewer redundant messages but
incurs a high latency. The main problem of this class of algorithm is determining
which hop must switch from one algorithm to another to benefit from their merits
and limit their drawbacks. In this chapter thesis analytically and experimentally
proved that the best threshold to switch from flooding to teeming is in hop three.
The results show that QuickFlood achieves a better performance compared to the

other flood-based algorithms.

105



CHAPTER 6
PROPOSED HYBRIDFLOOD SEARCH ALGORITHM

6.1 Introduction

Flooding has an essential problem when faced with high aggregate query rate.
Nodes become overloaded and the network closes down to function unsatisfacto-
rily. Furthermore, this problem gets worse as the size of the network increases. As
mentioned in section 2.6.1 there are three major solutions to alleviate the effects of
flooding. This thesis has named them TTL Limit-Based Flooding (TLBF), Prob-
ability Limit-Based Flooding (PLBF), and Hybrid Limit-Based Flooding (HLBF).
The main goal in the hybrid search is to combine two searching protocols to benefit
from their merits and limit their drawbacks. The significant question is how to
combine the search protocols to gain the maximum benefit and minimum draw-
back?

This chapter introduces a hybrid search algorithm for an unstructured P2P net-
work, which combines flooding with super-peers. Super-peers exploit the hetero-

geneity of the peers participating in the network.

6.2 Proposed HybridFlood Search Model

The essential problem of flooding starts when it is faced with a high aggregate
query rate, as nodes become overloaded and the network closes down to function
satisfactorily. Furthermore, this problem gets worse as the size of the network
increases. Our main idea behind the HybridFlood search is to enhance the flooding
search so that it can handle a much higher aggregate query rate, and to function
well with an increasing network size. To achieve this scalability, our HybridFlood
integrated flooding and super-peer searching schemes to cope with this problem.

HybridFlood is designed in two steps:



1. In low-hops, it processes flooding to benefit the high coverage growth rate of

messages and the low number of redundant messages.

2. In high-hops, when there are too many redundant messages and a low cov-
erage growth rate of messages, it does not follow the flooding algorithm. In-
stead, it starts selecting nosey nodes as super-peers to obtain the advantage
of the heterogeneity of capabilities across peers. These super-peers provide
good scalability, the opportunity to take advantage of node heterogeneity,

and a high routing efficiency.

6.3 First Step of Algorithm

In this step, HybridFlood starts with source peers for instance S;, i = {1, 2, 3,... ,
k}, and actions flooding by the limiting number of the Time-To-Live value TT L
the typical source peer S; send the requested query message to all its immediate
neighbors {Py, P»,... , Py}, which, in turn, forward the message to all their
neighbors except the message sender. This procedure is conducted in a hop-by-
hop fashion counted by the 77T L count. The query reaches is end when its TT' L
becomes zero, it becomes a redundant message, or the number of found messages
reaches the maximum number of found. If the procedure has ended due to latter
case (number of found messages is enough) the search is finished. Otherwise, when
TTLp = 0 those peers reached at the last hop of this step become the last peers
of the first step {LPy, LP>,... , LPy}, so the second step of search begins with
these peers.

It is assumed that the source peer is Si, query message (Qp,, a Time-To-Live
value equal to 7T Lr and the maximum number of found messages are equal to

Sp. TB.MAX. The algorithm of flooding is same as in Figure 5.1 in chapter 5.
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6.4 Second Step Description

In this step, HybridFlood begins with the last peers that have been visited in the
first step {LP), LPs,... , LP;}. These peers are dispersed uniformly across the
overlay network. In this step every last peer is picked its relevant nosey node, and
collects its meta data and then start processing the second step of the HybridFlood
search.

This section specifically describes the nosey nodes selection, indexing procedures
in nosey nodes, nosey node overlay network, redundancy nosey nodes, the search

procedure in the second step, and discusses the nosey node.

6.4.1 Nosey Node Selection

For selecting nosey nodes; each last peer such as LP; has checked its immediate
neighbors, which were not queried previously and has called them valid neighbors,
Valid.P;. Then from these valid neighbors it selects the neighbor with the most
links. This neighbor is called a nosey node, NN;. The high-degree nodes actually
have more pointers to a larger number of files and hence will be more likely to
have an answer that matches the query. Each nosey node is related to at least
one specific source node, such as 5;. It may be a possible that one nosey node is
related to more than one source node.

The nosey node exploits its heterogeneity by introducing a two level hierarchy of
peers. These nosey nodes arrange an independent sub-topology within the existing
P2P network. Nosey nodes operate as super-peers. They act as a centralized
server to a subset of its clients. Figure 6.1 illustrates the nosey node selection in
the second step source node start querying by flooding in 2 hops. Each final node
of the flooding step in the second hop selects a neighbor with the highest degree
of connections and call it a nosey node.

Each nosey nodes connect to its clients and caches the addresses of their files.
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Figure 6.1: Nosey nodes selection

Nosey nodes have two responsibilities: first they collect data index of their clients,
and second they answer behalf of their clients for query(s). Figure 6.2 explains the
algorithm which select nosey nodes.

Nosey nodes create three more fields for storing information about their indices,
clients, and the reserved nosey node NN.C'T', NN.T A, and NN.RD. Nosey nodes
collect its meta data indexes in NN.CT. The id of its clients and id of the reserved
nosey node are stored respectively in NN;.T'A and NN,;.RD.

Each nosey node has a unique ¢d, and it is stored in NN.ID. All nosey nodes
created in each round have the same hop count numbers. The i¢ds and hop count
numbers of nosey nodes are stored in the relevant source peer field S;.NT. Figure
6.3 presents the algorithm which returns the clusters of a typical nosey node.
Based on the algorithm, each client can be linked to more than one nosey node.
Thus, if one nosey node fails the clients may be connected to other nosey nodes, this

improves the network’s reliability and fault tolerance. To guarantee the reliability,
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Figure 6.2: Pseudo code Select Nosey Nodes(S;, LF;, Qm)

LP; < One typical last node remind from first step;
| P;.NI| < Represent the degree of node P;
Link < 1;
{ For all neighbors of LPi}
for V P; € nbr LP; do
if Qm.ID € P;.TR then
‘ Continue; {The node visited before therefore, by pass it}
else
{C’heck the degree of neighbors }

Linkl < |P;.N1|;
if Linkl > Link then
Temp < P;.ID;
Link <+ Linkl;
end
end
end

{Assign the id of neighbor with most degree to nosey node}
NN;.ID < Temp;

{Assign the id and hop count of nosey node to relevant source node}
S;.NT.ID + NN;.ID;

S;.NT.HP ¢ Q. TL:

Return(NN;.ID);

we propose a redundancy nosey node. At the same time, it is possible that a nosey

node operates as an ordinary node for other source peers.

6.4.2 Indexing Procedure in Nosey Nodes

After selecting each nosey node in the region, the nosey node then creates an index
table, which indexes all the files of their clients. Figure 6.4 illustrates the collection
of meta data in nosey nodes. This meta data contains the names and addresses of
the files which belong to their clients.

In order to maintain this index, when a client joins leaves or updates its data, it
sends new meta data to the selected nosey node. Figure 6.5 explains the algorithm

for refreshing and updating indexes of nosey nodes.
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Figure 6.3: Pseudo code Select Nosey Nodes Clusters(LFP;, Q)

LP; < One typical last node remind from first step;
Valid.LP; < 0; { Valid neighbors of LP; assign as empty set }
{ For all neighbors of LPZ-}
for V P, € nbr LP; do
if Q. ID € P, 'TR then

‘ Continue; {The node visited before, so, by pass it}
else

‘ Valid.LP; < Valid.LP; U P;.I1D; { Add this peer to valid neighbors }
end
end
Return(Valid.LF;);

Figure 6.4: Pseudo code Collect Index Nosey Nodes(/NN;.ID)

{For all client of NNi}

for V P, € NN; do

{If node is active }

if P;.ST = True then

{Assign id of client to related field of nosey node}
NN,;.CT.ID < NN,;.CT.ID U P;.ID;

{Assign file names of client to related field of nosey node cache}
NN,;.CT.File_name <— NN;.C'T.File _nameU P;.C'M,
end

end
Return(NN;.ID);

6.4.3 Nosey Node Overlay Network

Nosey nodes construct a secondary overlay, as a super-peer overlay. It is similar
to the original P2P overlay except that it is completely composed of the nosey
nodes created in each round. Nosey nodes with the same hop count numbers from
specific source peers link and construct a nosey node overlay. These nosey nodes
have multiple roles: first, they are ordinary peers in the original overlay. Second,
they are super-peers in the secondary overlay; where they act as a centralized server
for their subset of clients. Clients submit queries to them and receive results from
them.
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Figure 6.5: Pseudo code Refresh Index Nosey Nodes(/NN;.ID)

{If node x join to nosey node’s cluster }

if Join (node;) then
{Assz’gn id of client to related field of nosey node cache}
NN,;.CT.ID < NN;.CT.ID Unode.ID,
{Assign file names of client to related field of nosey node cache}
NN,;.C'T.File_name <— NN;.C'T.File _name Unode,.CM;

end

{If node x leave the nosey node’s cluster }

if Leave (nodey) then

{Delete id of client from related field of nosey node}

NN;.CTID < NN,;.CT.ID — node;.ID,;

{Delete file names of client from related field of nosey node cache}

NN,;.CT.File_name <— NN;.CT.File _name — nodey.C M,
end

{If node x Update its files }
if Update (node,) then
{Assign id of client to related field of nosey node}
NN,;.CT.ID <~ NN;.CT.ID Unode;.ID;
{Assign file names of client to related field of nosey node cache}
NN,;.C'T.File_name < NN;.CT.File _name U nodey,.CM;
end
Return(NN;.ID);

6.4.4 Nosey Node Redundancy

The main problem in a hierarchical structure is its single point failure. When a
nosey node fails or leaves all its clients become disconnected. To provide reliability,
we propose a redundancy nosey node in each cluster. The redundancy nosey node
is a node which has the most links in the cluster. Therefore, if the main nosey

node leaves or fails, this redundancy nosey node acts as the main nosey node.

6.4.5 Discussion on Nosey Nodes

Those nodes reached on the last hop of the first step 7T'Lr = 0 become kernels,

from which nosey nodes are initiated in the second step. Nosey nodes are selected
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at little cost by using local information. Each kernel only uses local information.
It checks its immediate neighbors for their degree and selects the node that has
the highest degree and calls it a nosey node. In this fully autonomous and highly
dynamic network, only local information can be inexpensively available. Nosey
nodes a have high degree and a large number of files and hence will be more likely
to contain an answer that matches the query. In addition, nosey nodes maintain
the index of their immediate neighbors which improves its accountability.

Its cache requires only negligible memory and has no overhead to network. The
nosey nodes are selected after limited hops of flooding. Thus, the kernels of nosey
nodes are dispersed randomly and uniformly across the network. Therefore, the
coverage of nosey nodes in the network is considerable. Nosey nodes decrease the
number of messages broadcast in the second step by an order of magnitude. Thus,

it significantly decreases the network traffic and improves the search efficiency.

6.5 Second Step of Algorithm

This step started by last peers visited in first step. When queries reach these last
nodes, and the maximum number of found is not satisfied, the search process in
the first step has finished. Our HybridFlood scheme marks these nodes as starting
points for the second step of the search.

The search procedure in this step initiates by replacing the Time-To-Live value
of each query in the marked peers with a second Time-To-Live value Q.TL =
TTLg. Then the search simultaneously continues from this group of peers, which
are randomly and uniformly located across the P2P networks. This procedure
continues in the following two steps until its Time-To-Live value is valid, or it has
obtained enough found messages.

First, the T'TL value of each query in marked nodes is decremented by one. Then

the query is forwarded to the new nosey nodes’ overlay. The search in this step
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follows the super-peer search discipline. The query checks the index field of each
nosey node in the new overlay, if found it returns the address of the relevant
client(s) and increments the number of found messages by one, otherwise it incre-
ment the number of messages not found by one.

Second, all cluster nodes of all nosey nodes become the last nodes in this step.
Thus each of these nodes operates the same as the last node in the first step. So,
again, each of these last nodes selects new nosey nodes, collect their meta data,
and begin a new search. This scheme obviously decreases the volume of traffic and
load on the network and increases the efficiency and quality of the search. The

Figure 6.6 explain the search algorithm used in the second step of HybridFlood.

6.6 Analytical Study

The analytical study of HybridFlood search has two objectives. First it estimates
the optimum threshold point of hops for switching from the first step of the algo-
rithm to the second step. Second, it compares the number of redundant messages

produces in the second step of HybridFlood with standard flooding.

6.6.1 Optimum Hop Count to Switch between Two Steps

To evaluate the threshold point of a hop, we have used the critical metric. The
critical metric in HybridFlood is a combination of a critical metric in the first and
second step of the algorithm. The first step of HybridFlood follows a flooding
search. Thus its critical metric, with reference to Equation (4.30), is equal to
A=2) 1p the second step, HybridFlood follows the super-peer search discipline.
Thus in the second step the critical metric is equal to the critical metric in the
local indexes. This local index has just one hop domain, because it is collecting
the data of its immediate neighbors.

The critical metric in the second step is negligible, because the number of redun-
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Figure 6.6: Pseudo code HybridFlood Second Step(LP,Q,, TTLs, MAX)

{Initialization}
LP < Set of last nodes remain from first step;
Qm < Default query message;
TTLg < TTL value in second step;
Qm.TL <+ TTLg;
while Q,,.TL > 0 do
Temp _array < 0; { Assign empty set}
Qm.TL <+ Q. TL-1,;
{for all typical last node in second step}
for V LP; € LP do
{Check the node visited before? }
if Q,.ID € LP;, TR then
‘ Redundant < Redundant + 1;
end
{do Sfollowing functions}
{Select its nosey node}
NN;.ID < Select Nosey Nodes(LP;, Qm,S;);
{C’ollect index of its client}
NN;.ID < Collect Index Nosey Nodes(NN;.ID);
{Refresh its indem}
NN;.ID < Refresh Index Nosey Nodes(NN;.ID);
{Get clusters of nosey node}
Cluster nodes < Select Nosey Nodes Clusters(LP;, Qm);

{Now collect clusters of nosey nodes }
Temp array < Temp _array U Cluster _nodes;

{Check content of selected nosey nodes }
if Q. KW € NN,;.C'T then

Find < Find + 1;
if Find > MAX then
‘ Return;
end
else
‘ Not Find <— Not_Find + 1;
end
end
{Last nodes for next turn }
LP < Temp array;
end
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dant message in the first hop is almost 0. Hence, the critical value of HybridFlood
depends on first step or just flooding. Equations (4.13), (4.19), and (4.30) proved
that the optimum point of hops in flooding are its first two hops. Hence the best

threshold point of a hop to switch between the two steps is in hop three.

6.6.2 Analytical Study in the Second Step

This section compares the number of messages broadcast in the same hops for
flooding and in the second step of the HybridFlood search. In the second step of
HybridFlood, messages are broadcast in alternate hops. Assuming that the Hy-
bridFlood search in the second step begins at hop h: thus the number of messages
broadcast in this hop is equal to zero because it is selecting nosey nodes. However,

in the next hop the number of message broadcast is equal to:

Mppp1 = d(d— 1) (6.1)

Thus, the number of messages broadcast from this hop to hop t, is equal to:

14/2) |
TMpppy = Y, dd—1)""
i=h

dzd(d — D2l — (@ — 1)k — (@ - D)t/2]y

CENCED)
a((d — D2 (g 1y
- @ 1){d—2) (6:2)

The value of ¢t must be greater than two, because in HybridFlood first two hops

are process as flooding. In the same hops, the number of messages broadcast in
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flooding is equal to:

t

TMpp; = » dd—1)""

i=h
~d(d(d—1)t = (d— 1" = (d - 1)}
a (d—1)(d—2)
_d((d =1 = (d- 1M
N (d—1)(d—2)
Thus:
d((d—1)lt/21+1_(g—1)h
TMygpht u ()dfl)(df2() =
TMppy - 4@ —(@-1)H

(d—1)(d—2)

(d B 1)Lt/2j—|—1 & (d h: 1)h

By simplifying Equation (6.4):

(d— D)L= (d— 1)

(d—1) Lt/ZJ-H_(d_l)h

TMyFne _ (d—1)"
TMppt (d=1)et1—(d—1)"
1Yy (d_l)h

(d . 1)Lt/2j—|—1—h Ay

(d . 1)Lt/2j—|—1—h -1

(d _ 1)t—|—1—h R

(d _ 1)t+1—h

(d— 1)Lt/2j+1—h 1 (d— 1)[t/2]+1—h 1
(d — 1)t+1=h I e e N e
(d— 1)[t/2j+17h
T (d—1)tt1-h
N 1
¥ A=l

With respect to Equations (6.5) and (6.6), can conclude:

TMypnt 1

TMpp

S A=)
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Equation (6.7) proves that our HybridFlood search in the second step cuts down
the number of message propagated by at least an order of magnitude compared

with flooding.

6.7 Experimental Results

The goal of this evaluation is to compare HybridFlood with blocking expanding
ring, teeming and QuickFlood algorithms. HybridFlood is implemented in two
steps. In the first step it performs M hops by flooding, and in the second step it
continues with N hops by choosing nosey nodes in each hop.

Hence, there are two interesting questions which must be investigated with an M,

N arrangement.

1. What is the effect of increasing or decreasing M on the performance of Hy-

bridFlood?

2. How does the redundancy nosey node impact on the searching efficiency?

To perform this evaluation, we have used the same experimental setup and metrics
explained in section 3.4.3.

Table 6.1 and Figure 6.7 compare the number of redundant messages produced un-
der the same conditions for Blocking Expanding Ring (BER), Teeming(¢ = 0.30),
QuickFlood (t = 4, § = 0.30), and the proposed HybridFlood with a different
number of hops and different number of redundancy nosey nodes. HybridFlood
achieves the lowest number of redundant messages compared with the other al-
gorithms. It confirmed our analytical results in which HybridFlood has the best
arrangement at ¢ = 3. That means three hops of flooding and the rest choosing
super-peers as nosey nodes. Our proposed algorithm reduced redundant messages
by more than 85% compared with blocking expanding ring.

The experiments show that increasing the number of hops in flooding increases the

number of redundant messages. The results also show that HybridFlood with one
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Table 6.1: The reduced percentages of redundant messages for each
algorithm compare with BER algorithm at different topologies (%)

Topology
Algorithm & 11 T2 Average
Teeming 30 37 71 54
QRF 4 30 58 82 70
HF 3 0 85 89 87
HF 3 1 76 85 80
HFEF 3 2 59 31 45
HF 4 0 59 57 58
HF 4 1 54 56 59
HE T2 44 32 38
1200
Ht) B2

1000

800

600 -]

400

200

Number of Redundant Messages

BER Teeming 30 QF 330 HF 30 HF31 HF32 HF40 HF41 HF42
Algorithms

Figure 6.7: Compare the number of redundant messages of QuickFlood
and HybridFlood with different arrangements by other algorithms at
different topologies

redundancy nosey node produces better results compared with other algorithms, in
that by increasing the number of redundancy nosey nodes the number of redundant
messages increases.

Table 6.2 and Figure 6.8 show the success rate in blocking expanding ring, teeming,
QuickFlood (¢t = 4, # = 0.30), and HybridFlood (¢t = 3 and 4 with 0, 1, and 2
redundancy nosey node) algorithms.

The HybridFlood (¢ = 3) algorithms achieves the best success rate compared with

the others, on average its success rate is more than twice that of the blocking
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expanding ring. It confirms our analytical results and proves that this algorithm
achieves the best performance with a combination of three hops in flooding and

the rest using nosey nodes.

Table 6.2: The increased times of success rate for each algorithm com-
pare with BER algorithm at different topologies

Topology
Algorithm T1 T2 Average
Teeming 30 1.1 1.9 1.5
QF 4 30 1.5 2.4 1.9
HF 3 0 1.7 2.7 2.2
HF 3 1 1.5 2.3 1.9
H il 1.0 0.8 0.9
HF 4 0 1.4 1.7 1.5
HF 4 1 il & 1.6 1.5
HF 4 2 1.0 1.0 1.0
0.0018
Bt B2

0.0015

0.0012

0.0009

Success Rate

0.0006

0.0003 -}
BER Teeming 30 QF 330 HF 30 HF31 HF32 HF40 HF41 HF42

Algorithms

Figure 6.8: Compare the values of success rate of QuickFlood and Hy-
bridFlood with different arrangements by other algorithm at different
topologies

The proposed algorithm with one redundancy nosey node even performs better
than teeming, its success rate is almost same as QuickFlood with arrangements
(t =4 and 6 = 0.3). The results show that increasing the number of redundancy

nosey nodes decreases the success rate. Table 6.3 and Figure 6.9 presented the
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amount of latencies from the different algorithms. As expected, teeming again has
the highest latency compared with the other algorithms. It gains more than two
times the latency compared with the blocking expanding ring.

The proposed algorithm achieves the best latency compared with the other algo-
rithms, it reduces the latency by approximately 80% compared with the blocking
expanding rings. The results show that HybridFlood (with an arrangement of

t = 3 and redundancy = 1) also achieves the best result.

Table 6.3: The reduced percentage of number of latencies in each algo-
rithm compare with BER algorithm at different topologies (%)

Topology
Alorithey - T2 Average
Teeming 30 -205 -79 -142
QF _4 30 19 47 33
HF 3 0 7T 82 79
HF 3 1 74 80 77
HF 3 2 64 40 52
HF 4 0 50 52 51
HF 4 1 48 51 50
HF 4 2 45 38 41
16000
Hty BT

12000

8000 -]

4000

Number of Latency

BER Teeming 30 QF 330 HF30 HF31 HF32 HF40 HF41 HF42
Algorithms

Figure 6.9: Compare the number latency of QuickFlood and Hybrid-

Flood with different arrangements by other algorithms at different
topologies
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6.8 Summary

The chapter started with the proposed HybridFlood search algorithm. The algo-
rithm used two different classes of searching protocols; flooding and super-peers.
The main objective of the hybrid search is to combine two or more searching proto-
cols to benefit from their merits and limit their drawbacks. The essential question
is how to combine the search protocols to gain the maximum benefit and minimum
drawback. The thesis describes the design of the HybridFlood algorithm. Hybrid-
Flood includes two main steps; it starts with a flooding search in low-hops and
then continues with nosey nodes in a super-peer search. The chapter describes in
details the first and second steps of the HybridFlood algorithms. The first step is
flooding for limited number of hops.

The second step includes algorithms for selecting nosey nodes, caching information
for nosey nodes, selecting reserved nosey nodes and comprise them and performing
the search algorithm in the second steps. Then the search performed by Hybrid-
Flood is analytically studied for two objectives. First for estimating the optimum
threshold point of hops for switching from the first step to the second step. Second,
to compare the number of messages propagating in the second step of HybridFlood
with flooding at the same condition. The analytical study proved that the best
threshold point to switch between the two steps of the hybrid flood is in hop three.
The results of the comparison study proved that the number of messages that were
propagated in the second step of HybridFlood were reduced by at least an order
of magnitude compared with flooding.

The experimental results confirmed that HybridFlood, with an arrangement of
t = 3 with zero and one redundancy nosey nodes, achieved the best performances

compare with the other algorithms.
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CHAPTER 7
CONCLUSION AND FUTURE WORKS

7.1 Conclusion

The upward trend of digital information production requires a scalable infrastruc-
ture that is capable of indexing and searching reaches content. The traditional
solutions such as all search engines act need to maintain an enormous central
database and a large amount of sophisticated hardware and high performance
software. The main disadvantage of this solution is they are always threatened by
scalability and availability.

A reasonable solution is thus to use unstructured P2P networks which are scalable,
available, low cost and easily deployed. The main challenge in unstructured P2P
is in searching or locating resources.

Search is basic activity for all P2P applications. The fundamental search for un-
structured P2P networks is flooding because they both have similar characteristics.
Both have no knowledge regarding the network topology and distribution of files.
Thus the flooding search is an attractive method for resource discovery in dynam-
ically evolving networks. Although flooding has a large coverage growth rate in
low-hops, it produces a huge amount of redundant messages in high-hops. There
was no reasonable threshold point between low-hops and high-hops in flooding
searches to obtain the maximum coverage growth rate and minimum number of
redundant messages.

This thesis introduced a custom-built metric which we called the critical metric.
With the critical metric the best threshold point for flooding and other combina-
tions of search algorithms can be estimated.

The research proposed a hybrid algorithm which combines flooding and teeming
to benefit from their advantages and limit their disadvantages. The proposed

algorithm is called the QuickFlood algorithm. QuickFlood was used to improve



the performance of flooding search. QuickFlood used the arrangement ¢ = 2, which
means two hops are processed with flooding and rest use the teeming algorithm.
The performances of QuickFlood compared with the blocking expanding ring shows
a 70% reduction in redundant messages, doubled the success rate, and reduced the
amount of latency by 30%.

The thesis proposed the HybridFlood search algorithm, which has combined flood-
ing with a super peer technique to benefit from their merits and to limit their
drawbacks. The algorithm uses flooding in the first step to gain a greater coverage
growth rate and fewer redundant messages. In the second step it used super peers
to gain low number of broadcast and redundant messages, and to achieve a high
search speed. HybridFlood is applied to enhance the flooding search. The perfor-
mance of HybridFlood compared with the blocking expanding ring shows an 80%
reduction in redundant messages, 2.5 time increase in the success rate, and an 80%
reduction in the amount of latency. The HybridFlood search algorithm is simple
and did not need any powerful resource nodes. The selection of a super peer is
simple and dynamic, it simply selects a neighbor with the highest degree and calls
it a nosey node (super-peer). The construction of HybridFlood is scalable, simple

and easy to implement in real systems.

7.2 Future Works

The future work can be summarized as follows:

e Consider the effective role of loop and cyclic paths in flooding searches and

counteract them to enhance flooding, QuickFlood, and HybridFlood searches.

e Study the effective role of the replication ratio of items to enhance QuickFlood

and HybridFlood searches.

e Consider the free riding malicious effects in P2P networks and overcome them
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efficiently to improve QuickFlood and HybridFlood searches.
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Samples of GraphT1 Connections

<edge startnode="42" endnode="9658" /> <edge startnode="63" endnode="9659" />
<edge startnode="63" endnode="9660" /> <edge startnode="63" endnode="9661" />
<edge startnode="63" endnode="9662" /> <edge startnode="63" endnode—="1448" />
<edge startnode="63" endnode="9663" /> <edge startnode="63" endnode="9664"/ >
<edge startnode="63" endnode="9665" /> <edge startnode="63" endnode="2974" />
<edge startnode="63" endnode="9666" /> <edge startnode="28" endnode="5806"/ >
<edge startnode="28" endnode="9667"/> <edge startnode="28" endnode="9668" />
<edge startnode="28" endnode="9669" /> <edge startnode="28" endnode="9670" />
<edge startnode="28" endnode="3552" /> <edge startnode="28" endnode="9671" />
<edge startnode="28" endnode="9672" /> <edge startnode="28" endnode="9673" />
<edge startnode="28" endnode="9674" /> <edge startnode="96" endnode="9675" />
<edge startnode="96" endnode="4095" /> <edge startnode="96" endnode="9676"/ >
<edge startnode="96" endnode="9677" /> <edge startnode="96" endnode="7629" />
<edge startnode="96" endnode="9678" /> <edge startnode="96" endnode="9679" />
<edge startnode="96" endnode="2896" /> <edge startnode="96" endnode="9680"/ >
<edge startnode="96" endnode="9681" /> <edge startnode="27" endnode="9682" />
<edge startnode="27" endnode="9683" /> <edge startnode="27" endnode="3607" />
<edge startnode="27" endnode—"9684" /> <edge startnode="27" endnode—"9685" />
<edge startnode="27" endnode="9686" /> <edge startnode="27" endnode="9687" />
<edge startnode—"27" endnode—"4097" /> <edge startnode—"27" endnode—"4483" />
<edge startnode="27" endnode="9688" /> <edge startnode="51" endnode="9689" />
<edge startnode="51" endnode—="9690" /> <edge startnode="51" endnode="9691" />
<edge startnode="51" endnode="9692" /> <edge startnode="51" endnode="9693" />
<edge startnode="51" endnode="9694" /> <edge startnode="51" endnode="9695" />
<edge startnode="51" endnode="9696" /> <edge startnode="51" endnode="9697" />
<edge startnode="51" endnode="4308" /> <edge startnode="103" endnode="2208" />
<edge startnode="103" endnode="9698" /> <edge startnode="103" endnode="9699" />
<edge startnode="103" endnode="9700" /> <edge startnode="103" endnode="9701" />
<edge startnode="103" endnode="864"/> <edge startnode="103" endnode="9702" />
<edge startnode="103" endnode="9703" /> <edge startnode="103" endnode="4346" />
<edge startnode="103" endnode="9704" /> <edge startnode="90" endnode="9705" />
<edge startnode="90" endnode="9706" /> <edge startnode="90" endnode="9707" />
<edge startnode="92" endnode="9708" /> <edge startnode="92" endnode="9709" />
<edge startnode="92" endnode="9710" /> <edge startnode="92" endnode="9711" />
<edge startnode="92" endnode="9712" /> <edge startnode="92" endnode="9713" />
<edge startnode="92" endnode="9714" /> <edge startnode="92" endnode="9715" />
<edge startnode="92" endnode="9716" /> <edge startnode="92" endnode="9717" />
<edge startnode="61" endnode—="9718" /> <edge startnode="61" endnode="9719" />
<edge startnode="61" endnode—="9720" /> <edge startnode="61" endnode="9721" />
<edge startnode="61" endnode—"9722" /> <edge startnode—"61" endnode—"9723" />
<edge startnode—"61" endnode—"9724" /> <edge startnode—"61" endnode—"9725" />
<edge startnode—"61" endnode—"9726" /> <edge startnode—"58" endnode—"9727" />
<edge startnode="44" endnode="9729" /> <edge startnode="61" endnode="9728" />
<edge startnode="58" endnode="9730" /> <edge startnode="44" endnode="9731" />
<edge startnode="58" endnode="9732" /> <edge startnode="44" endnode="9733" />
<edge startnode="58" endnode="9734" /> <edge startnode="44" endnode="9735" />
<edge startnode="44" endnode="9736" /> <edge startnode="58" endnode="9737" />
<edge startnode="58" endnode="9739" /> <edge startnode="44" endnode="9738" />
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<edge startnode="58" endnode="9740" /> <edge startnode="44" endnode="9741" />
<edge startnode="44" endnode="5520" /> <edge startnode="58" endnode="9742" />
<edge startnode="44" endnode—"9743" /> <edge startnode="58" endnode—"9744" />
<edge startnode="58" endnode—"1521" /> <edge startnode—"44" endnode—"9745" />
<edge startnode—"73" endnode—"9658" /> <edge startnode—"23" endnode—"9746" />
<edge startnode—"23" endnode—"7272" /> <edge startnode—"23" endnode—"4922" />
<edge startnode—"23" endnode—"7763" /> <edge startnode—"23" endnode—"9747" />
<edge startnode="23" endnode="9748" /> <edge startnode="23" endnode="9749" />
<edge startnode="23" endnode="8984" /> <edge startnode="23" endnode="9315" />
<edge startnode="23" endnode="9295" /> <edge startnode="59" endnode="9750" />
<edge startnode="59" endnode="9751" /> <edge startnode="59" endnode="9752" />
<edge startnode="59" endnode="9753" /> <edge startnode="59" endnode="9666" />
<edge startnode="59" endnode="9754" /> <edge startnode="59" endnode="9755" />
<edge startnode="59" endnode="9756" /> <edge startnode="59" endnode="9757" />
<edge startnode="59" endnode="9758" /> <edge startnode="56" endnode="9759" />
<edge startnode="56" endnode="9760" /> <edge startnode="56" endnode="9761" />
<edge startnode="56" endnode="9762" /> <edge startnode="56" endnode="9763" />
<edge startnode="56" endnode="9764" /> <edge startnode="56" endnode="9765" />
<edge startnode="56" endnode="9766" /> <edge startnode="56" endnode="9767" />
<edge startnode="56" endnode="9768" /> <edge startnode="115" endnode="9769" />
<edge startnode="115" endnode="4295" /> <edge startnode="115" endnode="9770" />
<edge startnode="115" endnode="9771" /> <edge startnode="115" endnode="3869" />
<edge startnode="115" endnode="3373" /> <edge startnode="115" endnode="9772" />
<edge startnode="115" endnode="9773" /> <edge startnode—"115" endnode="9774" />
<edge startnode="115" endnode="9775" /> <edge startnode="105" endnode="9776" />
<edge startnode="105" endnode="9777" /> <edge startnode="105" endnode="9778" />
<edge startnode="105" endnode="9779" / > <edge startnode="105" endnode="9780"/ >
<edge startnode—"105" endnode—"9781" /> <edge startnode—"105" endnode—"7515" />
<edge startnode="105" endnode="9782" /> <edge startnode="105" endnode="9783" />
<edge startnode="105" endnode="9784" /> <edge startnode="97" endnode="9785" />
<edge startnode="97" endnode="9786" /> <edge startnode="97" endnode="9787" />
<edge startnode="97" endnode="9788" /> <edge startnode="97" endnode="9789" />
<edge startnode="97" endnode="9790" /> <edge startnode="97" endnode="9791" />
<edge startnode="97" endnode="9792" /> <edge startnode="97" endnode="9793" />
<edge startnode="97" endnode="9794" /> <edge startnode="146" endnode="633" />
<edge startnode="45" endnode="9795" /> <edge startnode="45" endnode="9796" />
<edge startnode="45" endnode="9797" /> <edge startnode="45" endnode="9798" />
<edge startnode="45" endnode="9799" /> <edge startnode="45" endnode="9800" />
<edge startnode="45" endnode="9801" /> <edge startnode="45" endnode="9802" />
<edge startnode="45" endnode="9803" /> <edge startnode="45" endnode="9804" />
<edge startnode="108" endnode="9658" /> <edge startnode="146" endnode="9805" />
<edge startnode="143" endnode="9658" /> <edge startnode="150" endnode="9806"/ >
<edge startnode="150" endnode="6803" /> <edge startnode="150" endnode="9807" />
<edge startnode="150" endnode="9808" /> <edge startnode="150" endnode="3660"/ >
<edge startnode="150" endnode="5184" /> <edge startnode="150" endnode="9809" / >
<edge startnode="150" endnode—"9810" /> <edge startnode—"150" endnode—"9811" />
<edge startnode="150" endnode="9812" /> <edge startnode="83" endnode="9658" />
<edge startnode—"136" endnode—"9813" /> <edge startnode—"136" endnode—"9814" />
<edge startnode="136" endnode="9815" /> <edge startnode—="136" endnode—="9816" />
<edge startnode="136" endnode="9817" /> <edge startnode="136" endnode="9818" />
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<edge startnode="136" endnode="9819" /> <edge startnode="136" endnode="9820" />
<edge startnode="136" endnode="9821" /> <edge startnode="136" endnode="3290" />
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Samples of GraphT2 Traces
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Samples of GraphT2 Connections

<edge startnode="28" endnode="8168" /> <edge startnode="33" endnode="8169" />
<edge startnode="57" endnode="8170" /> <edge startnode="33" endnode="8171"/>
<edge startnode="33" endnode="8172" /> <edge startnode="33" endnode="8173" />
<edge startnode="33" endnode="8174" /> <edge startnode="33" endnode="8175"/ >
<edge startnode="33" endnode="8176" /> <edge startnode="33" endnode="8177" />
<edge startnode="33" endnode="8178" /> <edge startnode="33" endnode="8179" />
<edge startnode="33" endnode="8180" /> <edge startnode="33" endnode="8181" />
<edge startnode="33" endnode="8182" /> <edge startnode="33" endnode="8183" />
<edge startnode="33" endnode="357" /> <edge startnode="33" endnode="8184" />
<edge startnode="57" endnode="772" /> <edge startnode="9" endnode="8185" />
<edge startnode="120" endnode="8186"/> <edge startnode="78" endnode="8187" />
<edge startnode="78" endnode="5060" /> <edge startnode="78" endnode="8188" />
<edge startnode="78" endnode="8189" /> <edge startnode="78" endnode="8190" />
<edge startnode="78" endnode="8191" /> <edge startnode="78" endnode="8192" />
<edge startnode="78" endnode="1642" /> <edge startnode="78" endnode="1176" />
<edge startnode="78" endnode="3742" /> <edge startnode="4" endnode—"8193" />
<edge startnode="4" endnode="8194" /> <edge startnode—"4" endnode—"8195" />
<edge startnode="4" endnode—"3406" /> <edge startnode—"4" endnode—"8196" />
<edge startnode="4" endnode="8197" /> <edge startnode—"4" endnode—"8198" />
<edge startnode—"4" endnode—"8199" /> <edge startnode—"4" endnode—"8200" />
<edge startnode—"4" endnode—"7410" />> <edge startnode—"103" endnode—"8201" />
<edge startnode="103" endnode="8202" /> <edge startnode—="103" endnode—"8203" />
<edge startnode="103" endnode="8204" /> <edge startnode="103" endnode="8205" />
<edge startnode="103" endnode="8206" /> <edge startnode="103" endnode="8207" />
<edge startnode="103" endnode="2465" /> <edge startnode="103" endnode="8208" />
<edge startnode="103" endnode="8209" /> <edge startnode="67" endnode="3484" />
<edge startnode="67" endnode="8210"/> <edge startnode="67" endnode="8211"/>
<edge startnode="67" endnode="8212" /> <edge startnode="67" endnode="8213" />
<edge startnode="67" endnode="8214" /> <edge startnode="67" endnode="5655" />
<edge startnode="67" endnode="8215"/> <edge startnode="67" endnode="8216" />
<edge startnode="67" endnode="8217"/> <edge startnode="141" endnode="8218" />
<edge startnode="141" endnode="5758" /> <edge startnode="141" endnode="8219" />
<edge startnode="141" endnode="8220" /> <edge startnode="141" endnode="8221" />
<edge startnode="141" endnode="8222" /> <edge startnode="141" endnode="8223" />
<edge startnode="141" endnode="8224" /> <edge startnode="141" endnode="8225" />
<edge startnode="141" endnode="8226" /> <edge startnode="33" endnode="8227" />
<edge startnode="124" endnode—"8182" /> <edge startnode="38" endnode="8228" />
<edge startnode="38" endnode—"8229" /> <edge startnode="38" endnode="8230" />
<edge startnode="38" endnode—"4458" /> <edge startnode—"38" endnode—"8231" />
<edge startnode—"38" endnode—"8232" /> <edge startnode—"38" endnode—"8233" />
<edge startnode—"38" endnode—"8234" /> <edge startnode—"38" endnode—"8235" />
<edge startnode—"38" endnode—"8236" /> <edge startnode—"18" endnode—"8182" />
<edge startnode="6" endnode="2548" /> <edge startnode="6" endnode—="8237" />
<edge startnode="6" endnode="8238" /> <edge startnode="6" endnode—="8239" />
<edge startnode="6" endnode="6565" /> <edge startnode="6" endnode="8240" />
<edge startnode="6" endnode="8241" /> <edge startnode="6" endnode="8242" />
<edge startnode="6" endnode="8243" /> <edge startnode="6" endnode="8244" />
<edge startnode="112" endnode="88" /> <edge startnode="112" endnode="8245" />
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<edge startnode="112" endnode="8246" /> <edge startnode="112" endnode="8247" />
<edge startnode="112" endnode—"8248" /> <edge startnode="112" endnode—"8249" />
<edge startnode="112" endnode—"8250" /> <edge startnode="112" endnode="4015" />
<edge startnode="112" endnode—"8251" /> <edge startnode—"112" endnode—"8252" />
<edge startnode—"24" endnode—"8253" /> <edge startnode—"24" endnode—"8254" />
<edge startnode—"24" endnode—"5171" /> <edge startnode—"24" endnode—"8255" />
<edge startnode—"24" endnode—"8256" /> <edge startnode—"24" endnode—"8257" />
<edge startnode="24" endnode="3486" /> <edge startnode="24" endnode="3980" />
<edge startnode="24" endnode="8258" /> <edge startnode="24" endnode="8259" />
<edge startnode="149" endnode="8260" /> <edge startnode="146" endnode="8261" />
<edge startnode="30" endnode="8262" /> <edge startnode="30" endnode="8263" />
<edge startnode="30" endnode="8264" /> <edge startnode="30" endnode="8265" />
<edge startnode="30" endnode="8266"/> <edge startnode="30" endnode="8267" />
<edge startnode="30" endnode="8268" /> <edge startnode="30" endnode="8269" />
<edge startnode="30" endnode="3008" /> <edge startnode="30" endnode="385" />
<edge startnode="154" endnode="8186" /> <edge startnode="88" endnode="8270" />
<edge startnode="88" endnode="2080"/> <edge startnode="88" endnode="8271" />
<edge startnode="88" endnode="8272" /> <edge startnode="88" endnode="8273" />
<edge startnode="88" endnode="6040" /> <edge startnode="88" endnode="8274" />
<edge startnode="88" endnode="8275" /> <edge startnode="88" endnode="8276" />
<edge startnode="88" endnode="330" /> <edge startnode="79" endnode="8277" />
<edge startnode="79" endnode="8278" /> <edge startnode="79" endnode="8279" />
<edge startnode="79" endnode—"8280" /> <edge startnode—="79" endnode—"8281" />
<edge startnode="79" endnode—"8282" /> <edge startnode—"79" endnode—"8283" />
<edge startnode—"79" endnode—"2092" /> <edge startnode—"79" endnode—"2568" />
<edge startnode—"79" endnode—"8284" /> <edge startnode—"79" endnode—"8285" />
<edge startnode="79" endnode="1507" /> <edge startnode="79" endnode—="8286" />
<edge startnode—"79" endnode—"8287" /> <edge startnode—"72" endnode—"8288" />
<edge startnode="72" endnode—="8289" /> <edge startnode="72" endnode="8290" />
<edge startnode="7" endnode="8291" />~ <edge startnode="7" endnode="8292" />
<edge startnode="7" endnode="8293" />~ <edge startnode="7" endnode="8294" />
<edge startnode="7" endnode="8295" />~ <edge startnode="7" endnode="7251" />
<edge startnode="7" endnode="5734" /> <edge startnode="7" endnode="8296" />
<edge startnode="7" endnode="8297" /> <edge startnode="7" endnode="8298" />
<edge startnode="90" endnode="8299" /> <edge startnode="90" endnode="8300" />
<edge startnode="90" endnode="8301"/> <edge startnode="90" endnode="8302" />
<edge startnode="90" endnode="8303" /> <edge startnode="90" endnode="8304" />
<edge startnode="90" endnode="486" /> <edge startnode="90" endnode="8305" />
<edge startnode="90" endnode="8306" /> <edge startnode="90" endnode="8307" />
<edge startnode="130" endnode="8308" /> <edge startnode="130" endnode="8309" />
<edge startnode="130" endnode="8310" /> <edge startnode="130" endnode="2359" />
<edge startnode="130" endnode="8311" /> <edge startnode="130" endnode="8230" />
<edge startnode="130" endnode="2197" /> <edge startnode="130" endnode="7485" />
<edge startnode="130" endnode="8312" /> <edge startnode="130" endnode="5160" />
<edge startnode="129" endnode—"8313" /> <edge startnode—"153" endnode—"8314" />
<edge startnode="153" endnode—"7235" /> <edge startnode—"153" endnode—"8315" />
<edge startnode—"153" endnode—"5702" /> <edge startnode—"153" endnode—"8316" />
<edge startnode—"153" endnode—"3787" /> <edge startnode—"153" endnode—"8317" />
<edge startnode="153" endnode—="8318" /> <edge startnode="153" endnode—"4656" />
<edge startnode="153" endnode="8319" /> <edge startnode="131" endnode="8320" />
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<edge startnode="129" endnode="8321" /> <edge startnode="131" endnode="8322" />
<edge startnode="131" endnode—"8323" /> <edge startnode="131" endnode="8324" />
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