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OBJECT-BASED IMAGERY ANALYSIS FOR AUTOMATIC URBAN TREE 

SPECIES DETECTION USING HIGH RESOLUTION SATELLITE IMAGE 

 

 

By 

 

RAZIEH SHOJANOORI 

 

May 2016 

 

 

Chairman  : Assoc. Prof. Helmi Zulhaidi bin Mohd Shafri, PhD 

Faculty       : Engineering 

 

 

Sustainable management and monitoring the urban forest is an important activity in an 

urbanized world and subsequently operational approaches requires information about 

the status to determine the best strategic. In spite of availability of some traditional 

methods which imposes difficulties for tree species identification in larger urban areas, 

there is a demand for a fast, sensitive, that is expected to facilitating improvement of 

monitoring involve remote sensing technologies and image analysis techniques for 

urban forest inventory, urban tree species detection and ecology management. The 

main goal of this research is to build generic rule from World View-2 satellite imagery 
in conjunction with spectral, spatial, color and textural information, which is extracted 

from available training data for tree species detection. After segmentation, the most 

important step was feature selection, which is used for dimensionality reduction and 

discrimination between different attributes. The attribute evaluator method, which 

performed in this study, was CfsSubsetEval. Result of attribute selection indicates that 

26 attributes were extracted from 56 attributes of the WorldView-2 image. In this 

research, most of satisfactory results achieved from the generic model and proves it can 

be easily performed to different WorldView-2 images from different areas and 

provided the high accuracy through algorithms for tree species detection namely, 

Mesua Ferrea, Samanea Saman, and Casuarina Sumatrana without using any training 

data. This study also explores the use and comparison of object-based classification, 
and two common pixel-based classification methods namely, maximum likelihood and 

support vector machines based on WorldView-2 satellite imagery to evaluate the 

potential of the object-based in compare to pixel-based to detect urban tree species. The 

method of maximum likelihood classification and support vector machines leads to the 

lowest classification accuracy since these algorithms extract only the spectral 

information of each pixel and consequently fail to utilize spatial, color and textural 

information. 
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Mei 2016 

 

 

Pengerusi   : Professor Madya Helmi Zulhaidi Mohd Shafri, PhD 

Fakulti       : Kejuruteraan 

 

 

Pengurusan mampan dan pemantauan hutan bandar adalah satu aktiviti yang penting 

di kawasan perbandaran yang memerlukan maklumat mengenai status untuk 

menentukan strategik terbaik. Walaupun terdapat beberapa kaedah tradisional yang 

menyatakan kesukaran untuk mengenal pasti spesies pokok di kawasan bandar yang 

lebih besar, terdapat permintaan terhadap teknik yang cepat dan sensitif, yang 

dijangka akan memudahkan peningkatan pemantauan melibatkan teknologi 

penderiaan jauh dan teknik analisis imej untuk inventori hutan bandar, pengesanan 

spesies pokok bandar dan pengurusan ekologi. Matlamat utama kajian ini adalah 

untuk membina peraturan generik daripada imej satelit Worldview-2 yang 

menggabungkan informasi spektrum, ruang, warna dan tekstur yang diekstrak 

daripada data latihan yang disediakan untuk mengesan spesies pokok. Selepas proses 
segmentasi, langkah yang paling penting ialah pemilihan sifat yang digunakan untuk 

mengurangkan dimensi dan mendiskriminasi sifat-sifat khusus yang berbeza. Kaedah 

penilaian sifat penilai yang diaplikasi dalam kajian ini adalah CfsSubsetEval. 

Keputusan pemilihan sifat khusus menunjukkan bahawa 26 sifat telah dipilih daripada 

56 sifat yang terdapat pada imej WorldView-2. Dalam kajian ini, sebahagian besar 

daripada hasil yang memuaskan dicapai daripada model generik. Ini secara langsung 

membuktikan bahawa teknik ini boleh dilakukan dengan mudah pada imej 

WorldView-2 yang berbeza dari kawasan yang berbeza dan mampu memberi 

ketepatan yang tinggi melalui penggunaan algoritma untuk mengesan spesies pokok 

Mersua Ferrea, Samanea Saman dan Casuarina Sumatrana tanpa menggunakan apa-

apa data latihan. Kajian ini juga meneroka penggunaan dan orbandingan klasifikasi 
berdasarkan objek, dan dua teknik klasifikasi berasaskan piksel yang biasa digunakan 

iaitu  “maximum likelihood” dan “support vector machine” berdasarkan imej satelit 

WorldView-2 untuk menilai potensi pengesanan pokok bandar melalui teknik 

klasifikasi berbeza. Kaedah klasifikasi menggunakan “maximum likelihood” dan 

“support vector machine” menghasilkan keputusan ketepatan klasifikasi yang paling 

rendah disebabkan algoritma ini hanya mengekstrak maklumat spektrum sahaja dari 

setiap piksel dan seterusnya gagal untuk menggunakan maklumat ruang, warna dan 

tekstur. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Nowadays the world’s population in urban areas is more than rural areas. The latest 
statistics of world’s population has demonstrated that 54 precents of the world’s 

population lives in urban areas, and this population is going to be 66 precents by 2050 

(The United Nations, 2014). Urban area is commonly defined as spaces with artificial 

surfaces and dense population, and the vegetation that covers an urban area is considered 

an urban forest. Urban forests may include any type of vegetation in a metropolitan area; 

types of vegetation include trees, shrubs, and woody plants on the roadside or plants on 

a larger scale, such as a forest park. 

Urban forests not only result in social and economic advantages, such as recreational 

spaces and tourism attraction, but also provide several benefits to the ecosystem. The 

most important effect of urban forests in the ecosystem include the following: protection 

of biodiversity, avoidance of soil erosion, carbon storage, nutrient cycling, improvement 

of air and water quality, slowing wind and reducing water volume caused by storms, 
moderate local climate, energy waste minimization by creating shades to buildings, and 

decreasing heat in an island (Akamphon & Akamphonb, 2014; Conine et al., 2004; 

Gobster & Westphal, 2004; Huang et al., 2007; Ma & Ju, 2011; Shahidan et al., 2010; 

Xiao & McPherson, 2005). 

As urban forests are vital in ecology, their management, which is called urban forestry, 

must include strategic and appropriate urban design and planning (Huang et al., 2007; 

Iovan et al., 2008; Kong & Nakagoshi, 2005). Nevertheless, rapid urbanization, which 

poses a threat to the safety of an ecosystem (Hepinstall-Cymerman et al., 2013), has 

compelled scholars to focus on urban green spaces. Human society seems to have 

realized that living without nature is difficult and unsafe (Kong & Nakagoshi, 2005; Li 
et al., 2010). 

With progressing urbanization, managing urban forests has become a significant 

concern. The growth of residential and commercial areas can negatively affect vegetation 

and ecology. Hence, one of the issues in urban forestry is determining the state and 

quantity of urban vegetation and buildings and controlling their growth and deterioration 

(Gillespie et al., 2012; Iovan et al., 2008; Kong & Nakagoshi, 2005). Sufficient 

knowledge on urban forests, such as tree location, size, and species, is essential for 

effective urban forestry (Ardila et al., 2012). 

For instance accurate and reliable information on different tree species is crucial to urban 

vegetation studies. This information assists urban planners and researchers in urban 
planning and disaster management (Gong et al., 2013; Hao et al., 2011; Iovan et al., 

2008). 
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Urban spaces are complex areas; hence, accessibility to all trees by field survey is 

extremely difficult and time-consuming. In this method, the entire city or some parts of 

an area are randomly selected for sampling (Nowak et al., 2008). At present, remote 

sensing can overcome these limitations. It can be used to obtain highly accurate 

information by monitoring and managing urban areas and vegetation(Ardila et al., 

2012). 

Given the spectral similarity between different tree species, hyperspectral data can 

discriminate urban tree species appropriately because of characteristics such as narrow-

band, multi-channel, and inclusion of continuous spectrum information. However, these 

data have several drawbacks, including limited coverage, high volume, and high 
cost(Shafri et al., 2012). Studies conducted with high-resolution satellite imageries, 

such as IKONOS and QuickBird, also extract tree species effectively (Hájek, 2006; Ke 

& Quackenbush, 2007; Mora et al., 2010; Puissant et al., 2014; Sugumaran et al., 2003; 

Voss & Sugumaran, 2008). 

Nonetheless, tree detection and information extraction from urban areas are difficult 

when traditional pixel-based image classification methods are used. This classification 

lowers classification accuracy due to the high-grade spectral variability within land 

cover classes that are affected by sun angle, gaps in tree canopies, and shadows (Johnson 

& Xie, 2013; Yu et al., 2006). 

To overcome the aforementioned limitations, object-based image analysis (OBIA) 

approaches can be utilized to improve classification accuracy (Li et al., 2010; Lobo, 

1997; Puissant et al., 2014; Shouse, 2013). Several studies have been conducted to 

detect tree species; however, the lack of rule sets for conducting this detection process 

in urban areas remains a major setback. 

In tropical areas such as Malaysia, common urban management issues involve 
controlling the wind, cooling the environment, and increasing energy savings. Thus, the 

present study attempts to develop new generic rule sets to extract the tree species, which 

are among the most popular species of urban trees and can increase energy efficiency 

and limit the damage to properties by windbreak. Moreover, WorldView-2 (WV-2) 

imagery is used because of the potential of new bands with high spatial resolution to 

detect vegetation (Immitzer et al., 2012; Latif et al., 2012; Marshall et al., 2012; Nouri 

et al., 2014; Pu & Landry, 2012; Rapinel et al., 2014). 

1.2 Problem Statement 

In tropical countries such as Malaysia, the urban development leads to deforestation and 

disappearing of urban trees. The estimated global deforestation rate is about 7.3 milion 

hectares annually. If the current rate of deforestation continues, up to 28,000 species are 

expected to become vanish by next quarter, and it will take less than 100 years to destroy 

all the forests on the earth.  

Rapid urbanization, which poses a threat to forests and the safety of an ecosystem 

(Hepinstall-Cymerman et al., 2013), has compelled scholars to focus on urban green 
spaces. With progressing urbanization, managing urban forests has become a significant 

concern. Insufficient knowledge on urban forests, such as tree location, size, and 

species, will be destroyed the urban forestry.  
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Since urban spaces are complex areas; accessibility to all trees by field survey is 

extremely difficult and time-consuming. Although remote sensing technique is the best 

method to overcome the time and coverage limitations, some data such as hyperspectral 

data has the important limitations such as cost, time and coverage. Hence the purpose of 

this research is to develop a new generic rule set to detect urban tree species based on 

the remote sensing economical data using statistical approach. 

1.3 Scope of the Study 

This study focuses on detection of three tropical urban tree species. For this purpose the 

characteristics of the trees are limited to the colour, texture, spatial and spectral 

information, so the ages of the trees will not be considered in the analysis. Moreover the 

minimum size of the trees will be 1.5 m2. 

The study will not cover the counting of trees and will only focus on the detection of tree 

species. Lastly the study area is limited to the urban area, and the locations are situated 

in Malaysia. 

1.4 Research Objectives 

The general objective of this thesis is to develop a new generic rule set to detect urban 

tree species from Very High Resolution Satellite (VHR) imagery such as WorldView-2. 

The specific objectives of this study include: 

 To evaluate the performance of pixel-based and object-based image analysis

(OBIA) methods for detection and discrimination of urban tree species.

 To develop a new generic rule set to discriminate urban tree species based on

an OBIA by utilizing spectral, spatial, color and texture information.

 To validate the transferability of the new generic rule sets in other study areas.

1.5 Structure of thesis 

The thesis is made up of five chapters, each corresponding to the objectives and 

contributing towards an advance understanding of the remotely sensed precursors. This 

first chapter introduces the thematic context of the study, the research problem, the 

motivation to pursue the research, and the research objectives. 

The second chapter reviews literature related to the proposed topic. Aside the literature 

of the importance of urban forest, the previous efforts on approaches and techniques for 

urban tree species detection and discrimination by remote sensing are explained 

(including different imagery and classification techniques). 

The third chapter explains an improved framework for urban tree species detection. In 

first part of this chapter the image pre-processing on WV-2 imagery is considered; 

secondly the pixel-based classification (Maximum Likelihood and Support Vector 

Machine) and object-based (OB) classification are explained. Finally the procedure to 

develop a new generic model to discriminate urban tree species is discussed. 
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In the fourth chapter of this thesis, the analysis results, which are done on the remotely 

sensed imagery, are collected. The first part is the spectral-based classification results, 

and the main part of this chapter is the result of the new generic model which is based on 

OB classification. 

Finally, chapter five focuses on the summary, conclusions, contribution of this study 

and recommendations for future research. 
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 CHAPTER 2 

2 LITERATURE REVIEW 

2.1 Introduction 

The purpose of this chapter is to review other researches that are related to urban forest 

especially urban tree species detection by field measurement and remote sensing 

techniques. In this chapter firstly the definition of urban fore stand the benefits of them 

are discussed. Secondly remote sensing technique is explained briefly, afterward the 

application of remote sensing techniques and imagery in order to urban tree detection 

and discrimination by different classification methods (pixel-based and object-based) are 
evaluated. Finally the last part of this chapter focuses on the summary of the literature 

review and the gap of this study. 

2.2 Urban Forest 

Urban area commonly implies spaces with artificial surfaces and dense population, and 

the vegetation that covers the urban area is considered the urban forest. Urban forests 

may include any type of vegetation in a metropolitan area, such as trees, shrubs, and 

woody plants on the roadside, or comprise plants on a larger scale, such as a forest park. 

The urban forest not only results in social and economic advantages, such as recreational 

spaces and tourism attraction, but also has several ecosystem benefits. The most 
important ecosystem benefit is on the urban atmosphere which is divided to four main 

issues: 1) Influence on microclimate and temperature decreasing: By changing wind 

speeds, making shadow on surfaces and finally transpiring water. 2) Remove the air 

pollution. 3) Release the volatile carbon-based compounds by trees. 4) Avoid of wasting 

energy in buildings: by making a shade for building, to reduce heating and cooling energy 

of building. 

The other effect of urban forest is on the urban hydrology. Urban trees can help to the 

water quality problems by reducing the storm water overflow volume, and decreasing 

flooding destruction caused by roots’ water absorption and avoidance of soil erosion. 

After urban atmosphere and hydrology problems, the sound pollution is the other 

difficulties in the urban area. The leaves and stems of urban trees and shrubs can reduce 

the noise by scattering the sound primarily, so the tree and shrubs planting in urban area 
leads to decrease sound pollution (Nowak et al., 2008). 

In conclusion the most important advantages of urban forest can be defined as follows: 

The protection of biodiversity, avoidance of soil erosion, carbon storage, nutrient 

cycling, improvement of air and water quality, slowing wind and storm water, moderate 

local climate, shading homes, and decreased island heat effects(Akamphon & 

Akamphonb, 2014; Conine et al., 2004; Gobster & Westphal, 2004; Huang et al., 2007; 

Ma & Ju, 2011; Shahidan et al., 2010; Xiao & McPherson, 2005). Figure 2.1 shows some 

advantages of urban trees on ecosystem. 
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Since urban forest is vital in ecology, and thus, its management, which is called urban 
forestry, must strategize appropriate urban design and planning (Huang et al., 2007; 

Iovan et al., 2008; Kong & Nakagoshi, 2005). However, rapid urbanization, which 

poses a certain threat to the safety of ecology (Hepinstall-Cymerman et al., 2013), has 

pushed people to pay more attention to urban green spaces. Human society seems to 

have realized that living without nature is rough and unsafe (Kong & Nakagoshi, 2005; 

Li et al., 2010). 

As urbanization increases, managing urban forest has become significant. The growth 
of residential and commercial areas can negatively affect the vegetation and ecology. 

Hence, one of the issues in urban forestry is finding the state and quantity of urban 

vegetation and buildings and controlling their growth and deterioration (Gillespie et al., 

2012; Iovan et al., 2008; Kong & Nakagoshi, 2005). Sufficient knowledge on urban 

forest, such as tree location, size, and species, is essential for effective urban forestry 

(Ardila et al., 2012). 

Manual field measurement is the earliest method for studying urban forest (Francis, 

1987). In this method the entire city or some parts of the urban area are selected 

randomly for sampling (Nowak et al., 2008). On the other hand urban space is a complex 
area. Thus, accessibility to all trees and vegetation by field surveying is difficult, time 

consuming, and inaccurate. Knowledge on remote sensing overcomes these limitations 

and allows gaining highly accurate information by monitoring and controlling urban 

areas and vegetation (Ardila et al., 2012). 

2.3 Remote Sensing 

Remote sensing is a technique to observe the earth surface or the atmosphere from out 

of space using satellites (space borne) or from the air using aircrafts (airborne). In other 

words remote sensing refers to obtaining information about objects or areas at the 

Figure 2.1: Ecosystem services provided by urban trees (Phillips et al. 2011)
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Earth’s surface without being in direct contact with the object or area. Remote sensing 

uses a part or several parts of the electromagnetic spectrum. It records the 

electromagnetic energy reflected or emitted by the earth’s surface (Aggarwal, 2004). 

Remote sensing imagery has many applications in mapping land-use and cover, soils 

mapping, agriculture, forestry, urban planning, archaeological investigations, military 

observation, and geomorphological surveying. 

2.3.1 Application of Remote Sensing in Urban Forest 

To obtain vegetation cover map scientists developed traditional tools into new remote-
sensing systems (Huang et al., 2007; Iovan et al., 2008). For this purpose, different 

satellite images, passive optical systems, and active sensors have been utilized. 

Moderate resolution imaging spectroradiometer (MODIS) is one of the medium-
resolution imageries in monitoring urban forest with about 250-500 meters spatial 

resolution. MODIS and Landsat imagery are multi-temporal remote-sensing tools, and 

thus, their most important characteristic is the ability to gain the seasonal and annual 

information of different types of vegetation covers and land covers (Peijun et al., 2010; 

Qu et al., 2014; Zheng & Qiu, 2012). Vegetation covers have been shown to have 

different patterns in the time series in various conditions, such as humidity, because of 

their potential to combine various information or species compositions (Zheng & Qiu, 

2012). However, MODIS and Landsat have temporal limitations (16 days of repeat 

cycles)(Shouse et al., 2013). Moderate-resolution imageries often have mixed pixels 

because of low spatial resolution (approximately 30 m), and thus, they cannot be defined 

as a specific pure class (Peijun et al., 2010) and can detect only land-use types at the city 

level (Huang et al., 2007; Zheng & Qiu, 2012). 

Other medium-resolution satellite systems for studying urban forest have provided 

Landsat systems, which can provide a means to monitor urban forests rapidly (Huang et 
al., 2007; Zhang et al., 2007). The visual interpretation of Landsat TM shows that bands 

2 and 4 provide sufficient information on land-cover types, and this image with a false 

color composite of band 4-5-3 (R-G-B) has better differentiations of vegetation types, 

especially when an adaptive enhancement technique is used (Cai et al., 2010; Ismail & 

Jusoff, 2004; Jusoff & Hassan, 1996). However, when the study area is bound with a 

compact plantation because of spectral similarity, small urban and clearance areas are 

difficult to separate from species trees and mixed agriculture crops (Ismail & Jusoff, 

2004). Huang (2007) demonstrated that the Landsat ETM+ imagery of spread urban trees 

is less coarse than other medium-resolution imageries. 

High-resolution satellites have been launched to overcome the limitation of moderate-

resolution imageries, such as low spatial resolution. Hence, high-resolution imageries, 

such as QuickBird (Ardila et al., 2012; Hashiba et al., 2004; Tooke et al., 2009), 

IKONOS (Greenberg et al., 2009; Ma & Ju, 2011; Pu & Landry, 2012), SPOT (Kong  & 

Nakagoshi, 2005), RapidEye (Tigges et al., 2013), FormoSat-2 (Sun, Lin, & Ou, 2007), 
WorldView-1, and WorldView-2 (Immitzer et al., 2012; Latif et al., 2012; Nouri et al., 

2014; Rapinel et al., 2014), have become popular in detecting and monitoring urban 

forest. 
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QuickBird and IKONOS images had been common high resolution satellite imagery in 

urban forest studies, which both have panchromatic and four-multispectral bands (i.e., 

red, green, blue, and near infrared) with high spatial resolution (HSR) (Pan: 0.6 – MS: 

2.44 m). By contrast, red and near-infrared bands are sensitive to vegetation and contain 

approximately 90% of the vegetation information, and thus, these imageries can detect 

vegetation (Li et al., 2010; Puissant et al., 2014). Nonetheless, more bands may be 

required for extracting vegetation and trees from different land-cover types because of 

the complex environment in urban areas (Ouma & Tateishi, 2008). The resolution of the 

multispectral image is 2.4 m. Thus, the objects, which are smaller than 6 m will have 

mixed pixels, and the spectral characteristic of these pixels will be characteristic of mixed 

objects, such as roads and trees. Researchers have used different techniques to avoid this 
error. For instance, Hong et al. (2009) applied the grey level co-occurrence matrices 

(GLCM) mask and hierarchical classification to improve the accuracy, but they remain 

insufficient for high-accuracy extraction in urban areas. Consequently, some high-

resolution imagery, such as IKONOS and QuickBird, are insufficient to detect urban 

vegetation as the species because of the number of spectral bands. 

The World-View 2 satellite was launched in 2009 to improve high-resolution satellites. 

This high-resolution imagery has eight spectral bands, which involve bands sensitive to 

vegetation. It has four old bands, namely, blue, green, red and near infrared, and four 

new bands, namely, coastal (to detect chlorophyll content), yellow (to detect 

yellowness), red-edge (to detect plant diseases and vegetation species), and near infrared 

2 (to study biomass). Immitzer et al. (2012) demonstrated that the World-View 2 

imagery, especially the four new bands (Pu, 2009), can likely detect urban forest. 

However, some misclassifications have been seen in the classification of tree species 

because of spectral overlaps, the complex structure of the area, and the small tree crown, 
which leads to mixed pixels. The Airborne Hyperspectral is the best sensor to overcome 

spectral limitations. Ghiyamat and Shafri (2010) demonstrated that hyperspectral 

imagery provides adequate data to distinguish homogenous and heterogeneous forest 

biodiversity, but urban areas have different environment characteristics and should be 

evaluated separately. 

The hyperspectral data have characteristics such as narrow-band, multi-channel, 

continuous spectrum information, which can help detect urban vegetation (Hao et al., 

2011). Several studies on urban forest have been conducted with hyperspectral data 

(Adeline et al., 2013; Cho et al., 2012; Forzieri et al., 2013; Hao et al., 2011; Wania & 

Weber, 2007; Zhang & Qiu, 2012). Most researchers have demonstrated the 

effectiveness of hyperspectral data to detect vegetation and even tree species accurately. 

However, certain limitations, such as limited coverage and high volume and cost (Shafri 

et al., 2012), have pushed researchers to resort to high-resolution satellite imageries. 

With the technology advancement in remote sensing, active sensors are also used to 

detect urban forests. The most traditional satellites can detect tree species well, but they 

can only delineate urban features and tree crowns in 2D by reflected solar radiation. By 

contrast, active sensors, such as synthetic aperture radar (SAR) and light detection and 
ranging (LiDAR), can extract the shape of the tree crown and urban features in 3D even 

in the shadows and at night (Maksymiuk et al., 2014; Yao & Wei, 2013; Zhou, 2013). 

Therefore, active sensors have improved the monitoring of urban forest. 
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Although the benefits of RADAR sensors such as SAR to detect forests are observed 

(Perko et al., 2010), related studies are mostly limited to forest classification and tree 

roots evaluation, and the studies in urban forest is rare and new. Maksymiuk et al. (2014) 

in order to detect urban trees utilized SAR data; finally only single urban trees by 

Morphological Attribute Filters (AF) were detected. Accordingly, further studies should 

be done to evaluate the potential of SAR data to detect urban trees in large-scale and to 

discriminate different tree species. Versus RADAR data, the application of LiDAR data 

in urban forest is well known and adopted. 

Sung (2012) applied LiDAR data to assess the mean canopy height (MCH) and percent 

canopy cover (PCC) of an urban forest. According to the land development ordinance, 

the landowner should get a permit to remove the trees larger than 41cm in diameter at 

breast height (DBH) and Sung (2012) utilized LiDAR data to gain the canopy height 

model (CHM) by calculating the difference between digital elevation model (DEM) and 

digital surface model (DSM) (only on tree canopy), and the cells that had value less than 
1m were not included in analysis. Although the results demonstrated that LiDAR data 

are highly applicable and recommended to detect the tree structure and to evaluate the 

tree canopy heights, the mentioned method (subtracting DEM from DSM) is not 

applicable in urban area, because sometimes the highest surfaces can be the man-made 

materials such as buildings roofs, and when the uppermost surfaces is not tree canopy, 

the difference between DSM and DEM will not be functional for CHM. 

Many studies on aspects of urban forest through LiDAR data have been conducted, such 

as studies on tree crown shape and structure (Oshio et al., 2012, 2013; Sung, 2012), tree 

detection and urban vegetation mapping (Höfle et al., 2012; MacFaden et al., 2012; Yao 

& Wei, 2013; Zhou, 2013), tree position and plant density (Forzieri et al., 2009), and 

individual tree species detection (Vaughn et al., 2012; Zhang & Qiu, 2012). Zhang and 

Qiu (2012) used the simple confusion of LiDAR data with hyperspectral imagery to 

discriminate more than 10 tree species. They utilized LiDAR data only to detect tree 

crown, so the accuracy of tree species was directly related to the resolution of imagery. 
In other study, Nicholas et al. (2012) applied discrete Fourier transform on LiDAR data 

to discriminate five individual tree species. However in other researches the discrete 

point of LiDAR data is mentioned that is better than airborne waveform LiDAR data in order 

to tree classification (Heinzel & Koch, 2011; Hollaus et al., 2009; Reitberger et al., 2008), the 

Nicholas et al. research which was the first investigation to compare the accuracy of tree 

species by using discrete point of LiDAR data and waveform LiDAR data, shows that 

the overall accuracy by waveform information increase the overall accuracy about 6.2 

percent (overall accuracy by discrete point data was about 79.2 percent, and by using 

waveform LiDAR data was reached to 85.4 percent). Although airborne remote-sensing 

data, such as LiDAR data, have many advantages as mentioned above, but they have 

some limitations for urban land-cover classification, which are the processing and 
interpolating of point clouds into raster layers that are time consuming and vulnerable to 

misclassification (Zhou, 2013). Appendix A shows the satellite and airborne sensors for 

urban forest studies. 

In conclusion although the best data to detect urban forest and discriminate urban tree 

species is Hyperspectral data, it is not recommended for urban forest researches due to 

its limitation such as limited coverage, high volume and cost, thus the other satellite 

imagery should be replaced. The moderate-resolution imagery because of the low spatial 

resolution, which leads to mix pixels, is not suitable for urban forest detection. In contrast 

the high-resolution imagery has presented the potential of this imagery to detect urban 
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forest. However they were not sufficient to distinguish urban tree species till the higher 

resolution imagery such as World View-2 were launched. The result of urban tree species 

classification by traditional and new bands of World View-2 imagery has demonstrated 

the effectiveness of World View-2 to discriminate urban tree species, though they have 

some misclassification due to the spectral similarity. In order to overcome this limitation 

the extra information like spatial information, texture, colour should be utilized. The last 

data, which is almost used as an ancillary data, is LiDAR data. Although this data can 

extract urban features even in the shadows and night, the processing and interpolating of 

point clouds into raster layers leads to time wasting and some misclassification. Finally 

the review has shown that World View-2 imagery is the best data to detect urban forest 

if the cost, time, and accuracy be considered as the research factors. 

2.3.2 Urban Tree Detection by Different Classification Methods 

Tree detection by remote-sensing images is the recognition and classification of trees 

that lead to urban tree canopy and green space mapping (Johnson & Xie, 2013; Lang et 

al., 2007). The mapping is conducted by urban forestry monitoring methods, which can 

be classified into three groups, namely, visual interpretation and pixel- and object-based 

methods (Li et al., 2013). 

High-resolution data can be valuable in extracting land cover information, but tree 

extraction and information collection are difficult in urban areas when traditional pixel-
based image classification methods are used. Traditional methods involve supervised and 

unsupervised classifications. Although unsupervised classification techniques, such as 

ISODATA and K-mean, are used for thematic mapping (Langley et al., 2001; Sung, 

2012; Xie et al., 2008), these methods are rarely used for urban tree detection. Supervised 

classification methods, such as maximum likelihood classification (MLC), are often used 

to perform urban land cover mapping (including vegetation cover mapping) because of 

easy operation and good result (Ardila et al., 2011; Forzieri et al., 2013; Peijun et al., 

2010; Shen et al., 2010). The basis of MLC is a statistic classification of all pixels in 

each band to a specific class even when the threshold is defined. By contrast, MLC might 

cause certain misclassifications in urban areas. For instance, some parts of the grass area 

are often classified as trees. Thus, filters, such as intra-class uniformity, inter-class 

contrast, and smoothness of boundaries between classes, can be utilized to increase the 
contrast of features and consequently higher classification accuracy (Ouma & Tateishi, 

2008). Minimum distance (MD) is another supervised classification for studies on urban 

forest, and some researchers believe that this method classifies better than other methods 

(Kamaruzaman Jusoff, 2009; Latif et al., 2012). However, Shen et al. (2010) utilized 

three classification algorithms (i.e., ML, MD, and DT) for urban forest mapping, and the 

comparison of these algorithms showed that MD leads to the least classification accuracy 

and that decision tree (DT) has the highest accuracy among the three algorithms. The 

principle of DT classification is opposite to that of MLC, by which the separation of the 

complicated decision to several easier decisions is vital to reach the required 

classification (Ouma & Tateishi, 2008). 

Vapnik (1996) developed a new method called support vector machine (SVM). This 

method shows the ability to classify urban areas because of their needs to overcome 

limited training data and low sensitivity to the sample size (Mountrakis et al., 2011; Van 

der Linden et al., 2007). Therefore, some studies on urban forest to detect vegetation are 
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done through the SVM algorithm (Iovan et al., 2008; Iovan et al., 2014; Lafarge et al., 

2005; Tigges et al., 2013). 

These pixel-based classification algorithms may lead to low classification accuracy 

because of the high grade of the spectral variability within land cover classes affected by 

the sun angle, gaps in tree canopy, and shadows (Johnson & Xie, 2013; Yu et al., 2006). 

The pixel is the cause of within-class spectral variability in high-resolution images; a 

pixel is only a small part of a classification object (Huang et al., 2007). Thus, the object-

based classification is recommended to overcome this classification limitation. 

When compared with the visual interpretation and pixel-based method, object-based 

approaches can improve the classification accuracy. The object-based method can 

combine color, shape, spatial information, and contextual analysis for vegetation change 
detection(Li et al., 2010). The basis of object-oriented methods is image segmentation, 

which is the split of the image to spatially continuous and homogeneous regions and 

leads to reduce local spectral variation (Lobo, 1997). Li et al. (2010) combined the 

segmentation and fuzzy multi-threshold classification to classify urban land cover, where 

accuracy can reach up to 93.72%. Fuzzy logic and intelligence techniques, such as the 

artificial neural network (ANN), or integrated ones, such as the Adaptive Gaussian Fuzzy 

Learning Vector Quantization (AGFLVQ) can become other classification algorithms 

for urban forest detection and tree species identification (Höfle et al., 2012; Zhang & 

Qiu, 2012). These classification methods not only detect urban forest but also distinguish 

urban tree species, and this ability is explained in the subsequent section. 

Briefly by comparing several methods for urban tree detection, the object-based 

classification has shown the best classification result. However the pixel based methods 

such as ML and SVM have easy operation and good result for tree mapping, they are not 

adequate for urban area specially for distinguishing urban tree species (which is 
explained in next section), because the base of this classification is pixel, thus due to the 

spectral variability in urban area it cannot be applicable to reach to high classification 

accuracy. Lastly to overcome the limitation of pixel-based classification, not only the 

spectral information should be used, but also the more information about objects such as 

spatial information, texture and color should be utilized, hence the object-based 

classification is the best technique for urban tree detection. 

2.3.2.1 Urban Tree Species Detection 

Information on tree species is important for urban planning, disaster management, and 

ecological safety. Accurate, reliable, and expressive measurements of the types of urban 

vegetation help urban planners and researchers reach their targets (Gong et al., 2013; 

Hao et al., 2011; Iovan et al., 2008). The concept of the classification of tree species was 

introduced in the forestry field when satellite and aerial imagery were used to monitor 

forests (Gougeon, 1995). Numerous studies on the detection of tree species in forests are 

available (Immitzer et al., 2012), but research on urban areas remains scarce. 

The limitation of methods for different satellites or airborne sensors is one of the 

challenges in studies on urban tree species. For instance, classical methods, such as 

MLC, can be applied on multispectral imageries. However, these methods are often 

failed to be applied to hyperspectral data because of small training samples. Hence, other 
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techniques, such as SAM (Forzieri et al., 2013; Wania & Weber, 2007), linear spectral 

unmixing, and spectroscopic library matching, are utilized for the classification of urban 

tree species through hyperspectral data (Zhang & Qiu, 2012). However, Forzieri et al. 

(2013) applied ML, Spectral angle mapper (SAM), and spectral information divergence 

(SID) on airborne hyperspectral data (i.e., multispectral infrared visible imaging 

spectrometer (MIVIS)) to detect 10 urban tree species (i.e., herbaceous, heatland, arundo 

donax, poplar, oak, pine, cypressus, spruce, willow, and olive) and ML had the highest 

accuracy of up to 92.57%. The reason for the high accuracy may be the availability of 

LiDAR data because other researchers used them as the ancillary or main data to improve 

the accuracy of the classification of urban tree species (Höfle et al., 2012; Tigges et al., 

2013; Tooke et al., 2009; Voss & Sugumaran, 2008; Zhang & Qiu, 2012). 

Zhang and Qiu (2012) utilized LiDAR data for the classification of urban forest species 

based on tree crown (i.e., crown-based species classification), as such data can address 

the limitation of the tree crown-shaded side, small tree crowns (might be seen as one 
object), and the boundary of tree crowns, which leads to mixed pixels. The authors 

developed a method based on hyperspectral data by combining the fundamental aspect 

of the neural network and fuzzy logic. The AGFLVQ algorithm is the method utilized to 

distinguish 20 urban tree species, and the result demonstrates classification accuracy 

(approximately 68.8%) higher than that of other hyperspectral methods, such as SAM 

(approximately 39.95%). The classification accuracy is less than the accuracy shown in 

the study of Forzieri et al. in 2013, although the difference can be caused by the number 

and types of tree species (Forzieri et al. (2013): 10 Species, Zhang and Qiu (2012): 20 

Species). For instance, when the evergreen and deciduous trees are considered, the 

Gaussian Fuzzy Learning Vector Quantization (GFLVQ) method is unsuitable because 

the determination of at least two spectra should be used for deciduous trees. However, 
the basis of the GFLVQ algorithm is that all species have the same spectral signatures; 

one spectral signature is enough for evergreen species. Therefore, GFLVQ has a 

limitation, and ancillary data, such as LiDAR data, may solve this problem (Zhang & 

Qiu, 2012). 

The multispectral data can apply different classification methods. Hence, most studies 

on urban forest species were conducted via multispectral imageries because of other 

limitations of hyperspectral data (e.g., high volume, expensive, and time consuming). 

Appendix B shows the summary of the detection of urban forest species through remote 

sensing and different classification methods. 

The review has demonstrated that the most study areas are in non-tropical areas, which 

have a lot of evergreen and deciduous species, and discriminate between evergreen and 

deciduous species by spectral signatures in spring or autumn is easier than to discriminate 

tree species in tropical area. Tree species have different spectral characteristics. 

Therefore, spectral signatures are useful in distinguishing tree species. Despite this fact, 

pixel-based classifications, such as ML, and MD on the multispectral imagery without 

any ancillary data, such as LiDAR, have shown low accuracy (Ismail and Jusoff 2004: 

ML approximately 61%). By contrast, the complexity of the environment leads to high 
spectral similarity between vegetation in urban areas. Furthermore, urban areas have 

numerous pollutants that can change atmospheric conditions and affect spectral 

reflectance (Iovan et al., 2014). As a result, spectral signatures in multispectral imagery 

are insufficient to distinguish urban tree species, and thus, other characteristics of tree 
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species, such as spatial information, texture, and color, should be utilized to improve the 

classification of urban tree species. 

The object-based classification is recommended to overcome the above-mentioned 

limitation. Shouse et al. (2013) compared two classification methods (i.e., pixel-based 

and object-based classification) in two types of multispectral imageries (i.e., Aerial and 

LandSat TM5) to detect the species called bush honeysuckle (i.e., Lonicera maackii). 

The results show that the object-based approach has higher accuracy than the pixel-based 

approach. Moreover, HSR imagery has demonstrated high accuracy (Aerial (HSR): 

94.2% / Landsat (MSR): 74.6%). 

Texture information is one of the effective kinds of information that can be used to 

distinguish tree species. Iovan et al. (2008 and 2014) used HSR data and SVM to 

distinguish urban tree species (Platanus, Sophora, Tilia, Celtis, Pinus, and Cupressus). 

Spectral information was inappropriate to be used independently, and thus, texture 

information, which involves information about the spatial and physical arrangement of 

objects, was utilized (Mather & Tso, 2009). The results demonstrated that both methods 

of texture measures (i.e., first- and second-order GLCM) could detect urban tree species 

and separate deciduous trees from coniferous ones. 

LiDAR data are optimal for gaining the information on texture or other information, such 

as height. LiDAR data were used in many studies on urban forest species (Forzieri et al., 
2013; Höfle et al., 2012; Tigges et al., 2013; Tooke et al., 2009; Voss & Sugumaran, 

2008; Zhang & Qiu, 2012). When information increases, the classification or 

segmentation needs a robust technique. Hofle et al. (2012) showed that intelligence 

algorithms, such as the ANN, is a suitable for LiDAR information analysis. He applied 

two methods according to the object based-approach (ANN and Decision Tree (DT)) for 

the detection of six tree species, namely, Fagus sylvatica, Acer platanoides, Platanus 

acerifolia, Tilia cordata, platyphyllos, and Aesculus hippocastanum. The result shows 

that ANN with 95% overall accuracy has higher accuracy than DT with 72% overall 

accuracy. The spatial, texture, shape, or height information from LiDAR data can be 

utilized to detect tree species. Zhu et al. (2012) showed that the spectral characteristics 

from LiDAR data are applicable to distinguish the real leaf from the fake one. In spite of 

these results, trees often have approximately the same height and shape; and the high 
density of tree species may lead to the misclassification of tree species or that small trees 

may be overlooked (Iovan et al., 2008; Latif et al., 2012). 

The challenges of high-resolution imageries for the detection of urban tree species were 
highlighted as soon as the new HSR imagery called World View-2 was launched. Pu and 

Landry (2012) attempted to the segmentation and two methods (i.e., LDA and regression 

trees) to detect seven tree species (i.e., Sand live oak, Laural oak, Live oak, Pine, Palm, 

Camphor, and Magnolia) and demonstrated that four new bands of WorldView-2 

imagery can improve the accuracy by about 16% to 18% (in comparison with the 

IKONOS imagery). 

The review has shown that due to the complexity of urban area and spectral similarity 

between tree species, the high resolution imagery by pixel-based method is not sufficient 
to discriminate urban tree species, and the ancillary data such as DEM, spatial 

information, texture, and color is needed. Although the LiDAR data as the ancillary data 
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has shown the high classification accuracy, it cannot be reached to high classification 

accuracy separately. So to gain high classification accuracy, two images (HSR and 

LiDAR) are required, that is not cost effective. In contrast the object-based method in 

order to utilize the urban tree species information was utilized to distinguish species. For 

this purpose different high-resolution satellite imagery were used, and the World View-

2 in compare to other high-resolution satellite imagery has shown the highest accuracy. 

Accordingly, in order to urban tree species detection, the object-based technique should 

be improved and applied on the World View-2 imagery or new high-resolution imagery 

such as World View-3. 

2.3.3 Feature Selection and Compute Attribute Coefficients 

Very briefly, the Feature Selection is a process by which it automatically searches for 

the best subset of attributes in the dataset that will correctly discriminate the classes from 

the training data set. It is conceivable that feature selection raises the accuracy since it 

may eliminate noise and over fitting and may reduce the number of insignificant 

dimensions as well as training time.  

In WEKA software different attribute evaluators are allocated for attribute selection. 

There is two type of attribute subset evaluators, the first one is Scheme-dependent 

evaluators which including WrapperSubsetEval and ClassifierSubsetEval, and the 

second type is Scheme-independent that including CfsSubsetEval and 
ConsistencySubsetEval. Based on the study by Li et al. (2004) it is difficult to select the 

best feature selection method. It does not seem to exist a clear winner. By the way 

Wrapper method and CfsSubsetEval are the common attribute evaluators, and the 

comparison between them shows that CfsSubsetEval is almost as good as Wrapper, but 

is much faster (Witten, 2014). 

CfsSubsetEval evaluates the value of a subset attributes by considering predictive value 

of each attribute, along with the degree of inter-redundancy. This method is good when 

attributes is highly correlated with the class attribute while they have low inter-

correlation to each other (Hall & Holmes, 2003)  

Finding the functional technique to best discriminate between different classes in order 

to gain attribute coefficients is challenging tasks in image processing. Recently, a number 

of powerful kernel-based learning classifiers such as Fisher discriminate analysis (Mika 

et al., 2001) have been provided successful results in various fields at the machine 

learning community.  

Fisher’s analysis is usually used for pattern classification problems (Bandos et al., 2009; 

Du & Chang, 2001; Wentz et al., 2009), feature extraction and dimensionality reduction 

(Liao et al., 2011; Mohan et al., 2007). 

2.4 Importance of Urban Trees in Malaysia National Landscape Policy 

The National Landscape Policy (NLP) is a guide to turn the National landscape 

development, comprise of strategic policies and action plans as the means for the 

National Development Policy. The vision of this policy is transforming Malaysia into 

the Beautiful Garden Nation by year 2020, and the policy statement is to create a 
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functional and sustainable landscape based on Malaysia’s natural environment in 

realising the Beautiful Nation vision. 

Some of the National landscape policy action plans are as follows: 

 Impose at least 30% of urban development areas as green areas (Strategy 2.1.1).

 Create a green network by planting shade trees in urban areas, roadside,

riverside, parks and public areas (Strategy 2.1.5).

 Systematically and efficiently plan, implement, and manage green

infrastructure to address the issues of global warming and climate change

(Strategy 3.1).

 Encourage manageable and sustainable landscape development programs in

order to achieve beautiful garden nation (Strategy 3.2).

According to the mentioned strategies and other NLP action plans, urban green spaces 

are a main issue in Malaysia development by year 2020. Thus controlling, managing and 

protecting urban trees are an important matter for urban planners. 

2.4.1 Advantages of Some Tropical Urban Trees 

The study by Grimme and Laar (2005) has demonstrated that  Malaysia  and  other 

tropical countries  are  highly  exposed  to  radiation  that  would affect  the  energy  and 

temperature  on  the  overall climate for the whole year. In figure 2.2 monthly global 

radiations in Kuala   Lumpur   and   Cologne, Germany is compared. 

Figure 2.2:  Monthly global radiation and mean temperature in Kuala Lumpur 
and Cologne (Grimme and Laar 2002)
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Thus in tropical areas, common issues involve cooling the environment, increasing 

energy savings and controlling the wind. Mesua Ferrea (M.Ferrea ), Samanea Saman 

(S.Saman), and Casuarina Sumatrana (C.Sumatrana) are among the most popular 

species of urban trees in tropical areas such as Malaysia. These trees can increase energy 

efficiency and limit the damage to properties by windbreak. Specifically, the M.Ferrea 

species (figure 2.3) can lower thermal radiation by approximately 92.55% through 

reflection and absorption (Shahidan et al. 2010). 

Among the six common tropical tree species, S.Saman has saved the most energy for the 

past 40 years (Akamphon & Akamphon, 2014). Figure 2.4 shows the comparing energy 

saving of Rain Tree, Mango, Jackfruit, Mahogany, White cheesewood and Indian cork 

tree. The C.Sumatrana species is among the most typhoon- and tsunami-resistant trees 

(Chonglu et al., 2010); thus, it is the best method of wind breaking to protect properties 
in urban areas. In figure 2.5 the effect of a windbreak on wind speed has shown. 

Therefore, the aforementioned tree species are important to the urban environment in 

tropical areas. 

Figure 2.3: Mesua Ferrea tree.



© C
OPYRIG

HT U
PM

17 

Figure 2.4: Rain Tree (a), Simulated 40-years annual cooling energy savings for the 

building shaded by 6 famous tropical urban tree species (RT: Rain Tree, MG: Mango, 

JF: Jackfruit, MH: Mahogany, WC: White cheesewood, ICT: Indian cork tree) (b) 
(Akamphon & Akamphonb, 2014)
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Figure 2.5: An example of property damages by typhoon and tsunami (a, b),  Casuarina 
Sumatrana tree (c), the effects of a windbreak on wind speed (d) (Kuhns 1998).
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2.5 Summary of Literature 

This chapter presented the status of urban forest monitoring through remote sensing. 
First, different remote sensing sensors in order to urban vegetation mapping were 

evaluated. Second, various classification methods to extract urban forest and distinguish 

urban tree species were mentioned. Third, the importance of urban green areas in 

Malaysia and the benefits of some tropical urban trees were explained. This chapter has 

considered the most significant problems and mentioned the solution based on the remote 

sensing methods through related researches. 

Remote-sensing imageries can detect urban forests, but different sensors have their own 

limitations. For instance, hyperspectral data are the best sensor for extracting and 

distinguishing urban forest by spectral information, but the high volume data, 

availability, and cost are the limitations. The other data, which can detect urban features 

even in shadow and night, is LiDAR data, but it leads to misclassification and time 

wasting caused by converting point clouds into raster layers. Thus other high-resolution 

imageries such as World View-2 were utilised. 

By contrast, urban areas are complex environment, and the limitation of spectral 

information for multispectral imageries, especially for distinguishing tree species, has 

propelled researchers to utilize other urban vegetation information in the classification, 

such as spatial information, texture, and color. Hence, the object-based approach is more 
applicable than traditional pixel-based classifications, such as MLC and MD, because of 

the formers potential to combine various information. 

Finally remote-sensing techniques have been proven to be able to detect and monitor 
urban forests. Moreover, studies on remote sensing have been gaining interests. 

Nonetheless, the work in this field remains limited especially in tropical areas. Since 

collecting the ground truth data is difficult task due to the limitation of accessibility to 

all urban areas (such as the road sides, highways, private properties, etc.), so the 

automatic approach means the approach which does not need the ground truth data to 

detect urban tree species is recommended. In conclusion, further studies on remote 

sensing in urban forests are suggested to develop a high-accuracy algorithm to 

distinguish urban tree species automatically (without using training data), which could 

have transferability for other study areas.  
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 CHAPTER 3 

3 MATERIALS AND METHODS 

3.1 Introduction 

The main stages of this study are summarized in Figure 3.1, and the details of them are 

shown in Figure 3.2. The work is started with identifying remote sensing data and urban 

tree species, which are World View-2 (WV-2) imagery and three effective tree species 

in tropical area respectively. Then in order to detect the urban tree species, spectral-based 

classification (SVM and ML) and object-based classification is done on the WV-2 image. 
Finally the object-based approach was utilized to develop new generic rule-sets to detect 

urban tree species automatically. 

Figure 3.1: Research outline
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Figure 3.2: Work flowchart of this study. 

3.2 Data Acquisition 

World View-2 satellite imagery is the remote sensing data that is used in this study. WV-

2 satellite imagery was acquired in March 2009. Unlike other commercial satellites, the 

WV-2 satellite displays high spatial resolution (0.5 m for the panchromatic band and 2 

m for multispectral bands) with eight spectral bands and four new bands. Standard bands 
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are blue (0.45–0.51 μm), green (0.51–0.58 μm), and red (0.63–0.69 μm). The near-

infrared 1 band is in the range of 0.77–0.90 μm. The four new bands are coastal (0.40–

0.45 μm), yellow (0.59–0.63 μm), red edge (0.71–0.75 μm), and near- infrared 2 (NIR2) 

(0.86–1.04 μm). The potentially high spatial and spectral resolution of WV-2 imagery 

facilitates the classification and discrimination of different types of urban tree species. 

3.2.1 Study Area 

Based on the Chapter 2, urban area commonly implies spaces with artificial surfaces and 

dense population, and the vegetation that covers the urban area is considered the urban 

forest. The urban area which was considered in this study is part of the Universiti Putra 

Malaysia (UPM) campus, which is located in Serdang, Selangor, Malaysia (Lat. 03° N, 

Long. 101° E) and the validation area is part of Kuala Lumpur (Lat. 03.13° N, Long. 

101.69° E), Malaysia and Serdang (Lat. 02.99° N, Long. 101.70° E), Selangor, Malasyia. 

These study areas were covered with buildings, roads, different tree species, grass and 

water. Figure 3.3 shows all study areas, which are located in Kuala Lumpur and Serdang. 
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Figure 3.3: Map of Malaysia (a), location of study area and validation area (Serdang and 

Kuala Lumprur) in Malaysia map (b), Study area which is part of UPM campus, 

Serdang (c), validation area for Casuarina Sumatrana, Mardi, Serdang (d), validation 

area for Mesua Ferrea, Jalan Sungai Besi, Serdang (e), validation area for Samanea 
Saman, Jalan Syed Putra, Kuala Lumpur (f). 
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3.2.2 Pre-processing 

The WV-2 imagery same as the other remote sensing data is required to employ different 
pre-processing techniques to be prepared for the classification. In this study the WV-2 

image was subject to atmospheric and geometric corrections before processing and 

classifications. 

3.2.2.1 Atmospheric Correction 

The satellite imagery resolution is substantially ruined by existence of the atmosphere. 

Various atmospheric effects cause absorption and scattering of solar radiation by 
atmospheric aerosols and molecules. Usually the remote sensing applications need to 

remove the atmospheric effects to recover the essential spectral reflectance of the surface 

materials. In order to remove the atmospheric effects, the atmospheric correction should 

be done (Bernstein et al, 2012). 

Quick atmospheric correction (QUAC) is one of the atmospheric correction methods that 

need only specification of sensor band locations and radiometric calibration. Since the 

QUAC does not utilize first principles radiation transport, it is faster than physics-based 

methods such as fast line-of-sight atmospheric analysis of spectral hypercubes 

(FLAASH) (Bernstein et al., 2012). 

Finally QUAC is the fast atmospheric correction method, which can convert radiance to 

reflectance. For this purpose in this study the QUAC extension in ENVI 4.7 software 

was used. 

3.2.2.2 Geometric Correction 

Remote sensing data such as aircraft or satellite imagery usually geometrically distorted 

caused by the acquisition system and the movements of the platform (Baboo & Devi, 

2011). Thus in order to remove geometric distortion, a geometric correction should be 

done on the imagery when the image will be compared to other images or other maps. In 

this research the WV-2 dataset was geometrically corrected in the Universal Transverse 

Mercator projection zone at zone 47N and with a WGS 84 datum. 

3.3 Processing 

3.3.1 Categorize Classes in Study Area 

The main classes of this research are urban tree species. The study area contains different 

species of trees. This study considered three species (M.Ferrea, S.Saman, and 

C.Sumatrana) that significantly benefit the urban environment and temperature, thus 

resulting in high energy savings (Akamphon & Akamphon, 2014; Shahidan et al., 2010). 

Since urban area is a complex area, thus aside the urban tree species, six more classes 

are considered for the land cover classifications which are as follows: other trees, grass, 

water, man-made, road and shadow. 
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3.3.2 Spectral-Based Classification 

In order to compare the spectral-based and object-based classification accuracy, two 
common spectral-based classifications were utilized on WV-2 image. The spectral-based 

classifications were done on the UPM campus image. 

3.3.2.1 Maximum Likelihood Classification (MLC) 

MLC is one of the most popular supervised classification method used with remote 
sensing image data (Al-Ahmadi & Hames, 2009). ML is a parametric classifier that can 

classify unknown pixels based on the probability threshold. Thus, each pixel is allocated 

to the class with the maximum probability. 

3.3.2.2 Support Vector Machine Classification (SVM) 

SVM is another supervised classifier that separates classes based on the decision surface, 

which is called an optimal hyperplane. This method shows the ability to classify urban 
areas because of their needs to overcome limited training data and low sensitivity to the 

sample size (Mountrakis et al., 2011; Van der Linden et al., 2007). The Figure 3.4 shows 

the base of the SVM classifier. 

In the SVM classification different parameters such as Kernel type should be considered. 

There is four Kernel type in SVM parameters that are: Linear, Polynomial, Radial Basis 

Function and Sigmoid. Based on the literature (Cao et al., 2008) RBF Kernel shows better 

classification result, thus in this study RBF Kernel was used. The mathematical equation 

of RBF Kernel is: 

Figure 3.4: The theory of SVM (Yang et al. 2013)
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𝐾(𝑥𝑖𝑥𝑗) = exp (−𝛾 ||𝑥𝑖 − 𝑥𝑗||
2

) ,  𝛾 > 0  (1) 

The output of the Kernel is dependent on the Euclidean distance of xj from xi (one of 

these will be the support vector and the other will be the testing data point). In this 

equation 𝛾  is the gamma term in the Kernel function. The ( 𝛾)  value and penalty 

parameter (𝐶)  are the most important parameters in the RBF Kernel type. Cross-

validation using the grid-search method is a common method to determine the optimal 

parameters of the RBF Kernel (C and γ) through SVM classification. 

3.3.3 Object-Based Image Analysis (OBIA) 

In the previous section ML and SVM classifications were explained. These mentioned 

methods only utilize spectral information of the images, but another technique which is 

called Object-Based Image Analysis (OBIA) employs spectral and spatial information 

simultaneously (Zhou et al., 2009). This method can increase the amount of information 

regarding the object in the classification, such as color, texture, and compactness. OBIA 

can also reduce the number of units to be classified (Youjing & Hengtong, 2007). 

Based on the literature, the object-based classification shows higher accuracy than pixel-

based classification. The pixel-based classification algorithms may lead to low 
classification accuracy because of the high grade of the spectral variability within land 

cover classes affected by the sun angle, gaps in tree canopy, and shadows (Flanders et 

al., 2003; Johnson & Xie, 2013; Yu et al., 2006). Thus, in this study in order to develop 

new generic rules to detect urban tree species, the object-based image analysis was used. 

For this purpose, firstly the OB classification was done manually and creating the rule 

was based on some characteristic of tree species, in order to evaluate the potential of OB 

classification compare to pixel-based classification to detect urban tree species. Secondly 

the OB classification was done automatically based on the generic rule-sets, which were 

developed through the research. 

3.3.4 Manual Object-Based Classification (Based on Trial and Error) 

This OB classification was done manually and the rule-sets were developed based on 

trial/error and the characteristic of each tree species. The foundation of object-based 

classification was segmentation and merging.  

3.3.4.1 Segmentation and Merging 

The OBIA method is based on image segmentation techniques that divide the image into 

spatially continuous and homogeneous regions (Flanders et al., 2003) and limit local 

spectral variation (Li et al., 2010; Lobo, 1997). This technique can combine the 

information on colour, shape, and space with contextual analysis to detect vegetation. 

The algorithm in image segmentation is based on homogeneity descriptions, and object 

borders are extracted on such basis (Li et al., 2010). Small segments can merge into larger 

segments. 
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In this study, the feature extraction module in Envi Ex software is used for image 

segmentation, merging, computing attributes and export vector layer (figure 3.5). In Envi 

Ex software, the segmentation is based on Edge segment algorithm, and the merging 

method is based on Full Lambda Schedule. The edge segmentation method draws lines 

along the strongest intensity gradients and full Lambda schedule algorithm combines 

adjacent segments with similar spectral attributes (Feature Extraction tutorial). 

Since some urban trees by VHR imagery are considered as small objects, thus in order 

to develop a generic rule for detecting M.Ferrea, S.Saman, and C.Sumatrana, the 
segment scale should be small value to detect all urban trees even the small one. The 

segment scale in manually OB classification is considered 20 for the M.Ferrea, S.Saman, 

and C.Sumatrana species. The merging level is 85 for M.Ferrea and S.Saman, whereas 

that for C.Sumatrana is 65. In this research the value of segmentation and merging are 

determined based on trial and error. For this purpose through the scale bar, different 

range of segment scales and merging levels were applied and compared, consequently 

the best scales were selected for segmentation and merging level.  

3.3.4.2 Attribute Computation 

As mentioned previously, the benefit of an object-based method is its maximization of 

the advantages of spatial, spectral, texture and color attributes. In this study, information 

on the new bands of WV-2 imagery and on characteristics of the M.Ferrea, S.Saman, 

and C.Sumatrana species was considered for attribute selection. These characteristics 

include compactness, solidness, and texture. 

Figure 3.5: Feature extraction steps. 
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3.3.4.3 Rule-Based Classification 

Rule-based classification is based on the rules that have been defined by object attributes. 
This method is an advanced feature extraction technique that detects targets in detail 

through data mining and fuzzy logic. Rule set development is based on the varying 

knowledge of analysts regarding the spatial, spectral, and textural characteristics of each 

feature. Therefore, several tree characteristics are defined as rules in this study, including 

high values of normalized difference vegetation index (NDVI), texture, solidness, 

compactness, and different band values. Rule-based classification is often superior to 

supervised classification in feature extraction (ENVI Feature Extraction Tutorial). The 

process of constructing rule sets for M.Ferrea, S.Saman, and C.Sumatrana species is 

explained in the following subsections. 

 Detection Of Mesua Ferrea Species

The NDVI band ratio was utilized to extract trees from impervious surfaces. Given that 

NIR2 is insignificantly affected by atmospheric influence, the band ratios of bands 5 and 

8 were selected for NDVI calculation. Second, Tx_mean and Tx_range were utilized to 

separate trees and grass because trees have a higher texture value than grass does. Given 

that each tree species has its own special characteristics, their significant objective 

difference in terms of shape, compactness, and color can discriminate them. The leaves 

of the M.Ferrea species are highly compact, and the tree is approximately round. Thus, 
spatial attributes such as compactness, roundness, and solidity were considered. 

Moreover, three new bands of WV-2 were applied as the spectral attributes. These bands 

have the advantages of feature classification (band 4: yellow), high reflectivity of a 

portion of vegetation response (band 6: red edge), and broad vegetation analysis (band 

8: NIR2). 

 Detection Of Samanea Saman Species

Aside from the attributes used in the M.Ferrea rule set, two other spatial attributes were 

utilized to detect the S.Saman species. This attributes are called rectangular-fit (rec-fit) 

and majaxislen. Given that the shape of S.Saman species is almost four-sided, the leaves 

display a wide coverage despite the presence of M.Ferrea. Thus, the rec-fit and 

majaxislen attributes can distinguish the S.Saman species from other trees. 

 Detection Of Casuarina Sumatrana Species

To extract the C.Sumatrana species, the spectral attributes used in the rule sets for this 

tree are bands 1 (coastal), 5 (red), and 8 (NIR2). The shape and compactness of this tree 

effectively assist in its detection; therefore, the spatial attributes that are related to these 

factors are utilized in the rule set. These attributes include roundness, compactness, area, 

form-factor, and rec-fit. Given that C.Sumatrana species are often planted in Malaysia 

using the coppice technique, the high compactness darkens color and the texture value 

increases. Therefore, the other attributes considered in the rule set are Tx_mean, 

Tx_entropy, hue, saturation, and band ratio. 
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3.3.4.4 Accuracy Assessment 

Accuracy was assessed by comparing the classification map with a reference map. The 
confusion matrix was used as the statistical technique in this study to evaluate accuracy. 

A large amount of ground truth data was obtained for this assessment through in situ 

observation. A confusion matrix is a contingency matrix that is generally utilized to 

estimate the overall or specific accuracy of different classifications. The outputs of the 

confusion matrix in order to evaluate the classification accuracy involved some 

parameters such as user accuracy, producer accuracy, overall accuracy and kappa 

coefficient. 

- User accuracy: Also known as Reliability. It is the fraction of correctly 

classified pixels with regard to all pixels classified as this class in the classified 

image. For each class in the classified image, the number of correctly classified 

pixels is divided by the total number of pixels, which were classified as this 

class. 

- Producer accuracy:  It is the fraction of correctly classified pixels with regard 

to all pixels of that ground truth class. For each class of ground truth pixels, the 
number of correctly classified pixels is divided by the total number of ground 

truth or test pixels of that class. 

- The overall accuracy: It is calculated as the total number of correctly classified 

pixels divided by the total number of test pixels. 

- Kappa coefficient: Measures the agreement between classification and ground 
truth pixels. A kappa value of 1 represents perfect agreement while a value of 0 

represents no agreement. 

3.3.5 Automatic Object-Based Classification (Based on Generic Rule-Sets) 

In this section the OB classification was done based on the generic model which was 

developed through this research in order to predict urban tree species by using WV-2 

imagery. The process of developing the generic rule is explained in the following 

sections. 

3.3.5.1 Segmentation and Merging 

Segmentation and merging is the fundamental of OB classification. The definition of 

segmentation and merging was discussed in section 3.3.4.1. In order to develop a generic 

rule for detecting M.Ferrea, S.Saman, and C.Sumatrana, the segment scale should be 
small value to detect all urban trees even the small one. Therefore segment scale in this 

study was considered 20, and the merging level was 65. 

3.3.5.2 Attribute Computation 

Attribute computation was explained in section 3.3.4.2. However in this section in order 

to develop a generic model to discriminate urban tree species, aside the utilizing of 
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spectral, spatial and texture information, the band ratio of the WV-2 bands, which are 

effective to detect urban trees, were computed in this study. 

WV-2 image has new bands that would help to vegetation analysis. Thus for band ratio, 

not only the band ratio of tradition bands (Red and NIR 1) was computed, but also the 

band ratio of new bands (Red Edge and NIR 2) was considered. 

After computation of all attributes, in order to use the information of the segments 

attributes, the segments should be exported to a vector layer to use in other software. In 

this research ArcGIS software was utilized. 

3.3.5.3 Categorize Segments and Define Training data 

After segmentation and attribute computation, the segments which were exported to 

vector layer was open by ArcGIS software. In order to see the segments and their 
computed attributes, the attribute table of the mentioned vector layer in ArcGIS software 

should be utilized. In this attribute table each row demonstrate each segment with its 

computed attributes, and each field or column shows all values of one attribute. 

To create training data set to develop generic rule sets, at first the classes based on the 

ground truth data should be categorized. For this purpose in the attribute table one field 

was added, and then some segments from each land cover class were selected and defined 

as its own category. For instance in this study 9 classes were determined (M.Ferrea, 

S.Saman, C.Sumatrana, other trees, grass, water, road, man-made and shadow), and in 

the field in front of each segment the name of category was written. Finally some of them 

were selected as training data set, and were exported as a “dbf” format file. Dbf format 

files can open in excel software. 

3.3.5.4 Attribute Selection 

In section 3.3.5.2 all attributes of segments were computed. Now in this section the 

attributes, which were more significant to discriminate the 9 classes were selected. For 

this purpose in this study the WEKA software was used. 

WEKA is a collection of machine learning algorithms and data pre-processing tools 

written in Java and distributed under the terms of the General Public License (GNL). In 

WEKA software different attribute evaluators are allocated for attribute selection. There 

were two types of attribute subset evaluators, the first one is Scheme-dependent 

evaluators which including WrapperSubsetEval and ClassifierSubsetEval, and the 

second type was Scheme-independent that including CfsSubsetEval and 

ConsistencySubsetEval. Wrapper method and CfsSubsetEval are the common attribute 

evaluators, and the comparison between them shows that CfsSubsetEval was almost as 
good as Wrapper, but was much faster (Witten, 2014). Thus in this research the 

CfsSubsetEval was used as an attribute evaluator for attribute selection. 

CfsSubsetEval evaluated the value of a subset attributes by considering predictive value 
of each attribute, along with the degree of inter-redundancy. This method is good when 

attributes are highly correlated with the class attribute while they have low inter-
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correlation to each other. Figure 3.6 shows the components of Cfs, and equation (2) 

demonstrates the fundamental of this method: 

 Merit S = 
𝑘𝑟𝑐𝑓

√𝑘+(𝑘+1)𝑟𝑓𝑓

 (2) 

In equation 2, Merit S is the heuristic “merit” of a feature subset S containing k features, 

𝑟𝑐𝑓 is the mean feature-class correlation (f  s), and 𝑟𝑓𝑓 is the average feature-feature

inter correlation. 

3.3.5.5 Compute Coefficients of Selected Attributes 

In this section the selected attributes by WEKA were analysed through SPSS software 
to assigns a weight to the particular attributes. For this purpose fisher’s method as a 

predictor was used to provide the best discrimination between the groups. The Fisher 

linear discriminate analysis is one type of the principal components analysis (PCA), 

which is the most famous example of dimensionality reduction (Welling, 2005). The 

Fisher’s linear discriminate is given by the vector w which maximizes: 

Figure 3.6: Components of Cfs (Pradhan and Bamnote 2015).
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J (w) = 
W𝑇𝑆𝐵𝑊

W𝑇𝑆𝑊𝑊
 (3) 

Where SB is the “between classes scatter matrix” and SW is the “within classes scatter 

matrix”.  

The fisher’s analysis output include unstandardized coefficient allows the creation of 

rule sets based on coefficient. The mean discriminate scores for each particular class 

belong to the centroid, in other words group means are centroids. Basically, based on the 
number of classes and functions, there are centroids which are shown in the fisher’s 

analysis output. Differences in location of centroids show dimensions along which 

groups differ. Thus it would be possible to visualize how the two functions discriminate 

between groups by plotting the individual scores for the two discriminant functions.  

With using fisher discriminate function all variables in the final model for each class, 

were multiplied by the coefficients. The coefficients are the correlations between the 

variables in the model and the discriminant functions. The discriminant function 

coefficients represent the unique influence of each variable to the discriminant function. 

3.3.5.6 Develop a New Generic Rule Sets 

In order to develop a new generic rule sets a correlation between attributes and their 

coefficients were defined to allocate each segment to its correct class. For this purpose 

the Cartesian distance was used. 

Cartesian distance is the ordinary distance between two points. The distance between 

two points expressed in Cartesian coordinates, so the distance 𝐴𝐵  where 

𝐴 𝑖𝑠 (𝑥1 , 𝑦1, 𝑧1)𝑎𝑛𝑑 𝐵 𝑖𝑠 (𝑥2, 𝑦2, 𝑧2)  is given by:

𝑑(𝐴𝐵) =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2  (4) 

(Clapham & Nicholson, 2009) 

Figure 3.7 is the summary of the process to develop a generic rule sets and the software 

which were used for this purpose. 
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Figure 3.7: Workflow of developing a new generic rule sets. 

3.3.5.7 Transferability 

In order to check the transferability of the generic rule sets, the new rule sets were applied 

on different areas. Since the tree species were not in the same area, so for each tree 
species the separate area and image was used. For S.Saman, the rule sets were validated 

on part of the Kuala Lumpur and for M.Ferrea and C.Sumatrana the area in Serdang was 

used. 

3.3.5.8 Accuracy Assessment 

The accuracy assessment for OB classification automatically was same as the OB 

classification manually. Thus the confusion matrix was used as the statistical technique 
in this study to evaluate accuracy. A large amount of ground truth data was obtained for 

this assessment through in situ observation. 



© C
OPYRIG

HT U
PM

34 

CHAPTER 4 

4 RESULTS AND DISCUSSION 

4.1 Introduction 

In this chapter the results of spectral-based classification (MLC, SVM) and object-based 

classification (manually and generic rule-sets) in order to detect different tree species are 

discussed. Moreover through the OB classification, the result of the attribute selection is 

shown. 

4.2 Data Collection 

In order to do spectral-based classifications on the WV-2 image, data collection was done 

to create a ground-truth image. For this purpose the ground-truth image of the study area, 

which was some parts of UPM, campus was provided by field surveying. 9 classes were 

defined in the study area, 3 of them are urban tree species (M.Ferrea, S.Saman and 

C.Sumatrana), and the remained classes were other trees, grass, water, road, building 

and shadow. Figure 4.1 shows the ground-truth image of the study area. Moreover table 

4.1 demonstrates the number of region of interest (ROI) pixels for training and testing. 
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Figure 4.1: Study areas which is part of UPM campus (a), ground truth image as a training data (b) and ground truth 

image as a testing data (c)
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Table 4.1: Number of pixels as the training and testing ROI. 

4.3 Spectral-Based Classification 

Spectral-based classification or pixel-based classification can classify images more 

quickly than object-based classification. In this research, ML and SVM were used to 

illustrate the level of improvement achieved by object-based classification. The results 

of these two methods indicate that the ML classifier misclassified many pixels. Figure 
4.2 shows the result of ML classification. The misclassified parts are shown by red 

circles.

M. Ferrea 

(No. of Pixels) 

S.Saman 

(No. of Pixels) 

C.Sumatrana 

(No. of Pixels) 

Training (UPM Campus) 134 243 239 

Test  (UPM Campus) 731 1929 362 

Test (Jalan Syed Putra, KL) - 1003 - 

Test (Mardi, Serdang) - - 174 

Test (Jalan Sungai Besi, Serdang) 358 - - 
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Figure 4.2: Maximum Likelihood Classification (UPM campus).
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As mentioned previously, accuracy assessment is based on the confusion matrix. The 

overall accuracy of ML classification is 65.68%, with a Kappa coefficient of 0.3980. 

Table 4.2 shows the accuracy assessment of ML classification. 

 Table 4.2: Accuracy assessment of ML classification. 

The non-parametric algorithm known as the SVM classifier was used to measure the 

efficiency of machine learning. As it mentioned in Chapter 3, this method generated 

better results than ML classification did. Nevertheless, the SVM classifier still classified 

some images inappropriately because of the lack of awareness regarding fine spatial and 

textural features. Figure 4.3 shows the result of SVM classification, which utilized RBF 

as a kernel parameter.

ML 

Prod. Acc (%) User Acc. (%) 

M. Ferrea 85.71 28.66 

S. Saman 63.93 97.86 

C.Sumatrana 50.40 83.01 

Overall Accuracy 65.68 % 

Kappa Coefficients 0.3980 
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Figure  

Figure 4.3: SVM classification (UPM campus). 
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On the basis of the confusion matrix, the overall accuracy of the SVM classifier 71.07%, 

with a Kappa of 0.4523. As it mentioned before, ground truth data was also obtained for 

accuracy assessment through in situ observation. Table 4.3 presents the accuracy of SVM 

classification. 

 Table 4.3: Accuracy assessment of SVM classification. 

SVM 

Prod. Acc. (%) User Acc. (%) 

M. Ferrea 48.88 36.28 

S. Saman 78.00 95.56 

C.Sumatrana 67.60 41.94 

Overall Accuracy 71.07 % 

Kappa Coefficients 0.4523 

The accuracy of both ML and SVM classification was low with respect to identifying all 

tree species, including S.Saman, M.Ferrea, and C.Sumatrana. Furthermore, a visual 

interpretation indicated many misclassifications of S.Saman and M.Ferrea, as well as of 

other tree species. Given the spectral similarity between these classes, misclassification 

is a common error. Figure 4.4 shows the spectral profile of one sample of each class 

including M.Ferrea, S.Saman, C.Sumatrana, other tree and grass. This figure 

demonstrates that the spectral profile of the classes is near together, so the spectral 

similarity leads to the misclassification between classes. Therefore, methods of 

discriminating different tree species through pixel-based classification were difficult to 
develop. 
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4.4 Manual Object-Based Classification (Based on Trial and Error) 

After image segmentation and merging, the attributes were computed in order to create 

a rule to discriminate urban tree species. Spatial, spectral, color, band ratio and textural 

attributes were applied to develop new rule sets manually of object-based classification. 

The definitions of all attributes computed in manually rule-sets are presented in Table 

4.4. 

Figure 4.4: Spectral profile of M.Ferrea, S.Saman, C.Sumatrana, other 
trees and grass.



© C
OPYRIG

HT U
PM

42 

Table 4.4: Definition of all attributes, which are used in manually rule-sets. 

Attribute Description 

Minband_x Spectral - The minimum value of the pixels comprising 

the region in band x. 

Maxband_x Spectral - The maximum value of the pixels comprising 

the region in band x. 

Avgband_x Spectral - The average value of the pixels comprising the 

region in band x. 

Area Spatial - Total area of the polygon, minus the area of the 

holes. 

Compact Spatial - A shape measure that indicates the compactness 

of the polygon. 

Form_Factor Spatial - A shape measure that compares the area of the polygon 

to the square of the total perimeter. 

Majaxislen Spatial - The length of the major axis of an oriented 

bounding box enclosing the polygon. 

Roundness Spatial – A shape measure that compares the area of the 

polygon to the square of the maximum diameter of the 

polygon. 

Rectangular_Fit Spatial - A shape measure that indicates how well the shape is 

described by a rectangle. 

Solidity Spatial - A shape measure that compares the area of the polygon 

to the area of a convex hull surrounding the polygon. 

Tx_range Texture - Average data range of the pixels comprising the region 

inside the kernel. 

Tx_mean Texture - Average value of the pixels comprising the region 

inside the kernel. 

Tx_entropy Texture – Average entropy value of the pixels comprising the 

region inside the kernel. 

Band Ratio 

(NDVI) 

Band Ratio - Computes a normalized band ratio between two 

bands, using the following equation: (B2– B1) / (B2 + B1 + eps) 

Color Color Space - Compute HSI color space attributes. 

Hue Color Space – Hue is often used as a color filter and is measured 

in degrees from 0 to 360. 

Saturation Color Space – Saturation is often used as a color filter and 

is measured in floating-point values that range from 0 to 

10.
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Figure 4.5 shows the rule set attributes of the M.Ferrea, S.Saman and C.Sumatrana species. 

Figure 4.5: The manually rule sets for M.Ferrea, S.Saman and C.Sumatrana.
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On the basis of the confusion matrix, the overall accuracy assessment of manually rule-

based classification was 83.62%, with a Kappa of 0.6307. Nonetheless, some segments 

were not detected by object-based classification because of spectral similarities among 

classes and the confusion among different urban materials. Nevertheless, this type of 

classification effectively reduced the number of misidentified objects. Figure 4.6 shows 

the result of manually OB classification to detect urban tree species, and Table 4.5 

highlights the accuracy assessment of that based on the confusion matrix. 
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Figure 4.6: Result of Mesua Ferrea, Samanea Saman and Casuarina Sumatrana species detection by manually OB 
classification. 

Other trees Casuarina Sumatrana Samanea Saman Mesua Ferrea 
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Table 4.5: Accuracy assessment of manually OB classification to detect M.Ferrea, 

S.Saman and C.Sumatrana. 

OB Classification (Manually) 

Prod. Acc. (%) User Acc. (%) 

M. Ferrea 71.31 100 

S. Saman 86.97 100 

C.Sumatrana 73.76 98 

Overall Accuracy 83.62 % 

Kappa Coefficients 0.6307 

4.5 Automatic Object-Based Classification (Based on Generic Rule-Sets) 

Spatial, spectral, textural and colour attributes were applied to develop new generic rule 

sets of object-based classification. In order to utilize the attributes, the segmentation and 

merging which were the most important steps in OB classification were done by Envi Ex 
software. Figure 4.7 shows the image segmentation and merging by their suitable scale 

that were used in this study. Since segment scale was larger, the boundary of the objects 

would be larger and small objects could not be detected. Thus in this study, the segment 

scale was defined as a small value in order to detect the smaller tree species. The segment 

scale was 20, and the merging level was 65. 
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Figure 4.7: Segmentation scale preview, which was 20 (a) and merging scale 

preview, which was 65 (b). 

The very high resolution satellite imagery such as WV-2 image was helpful and provided 

important information to distinguish different objects. This information, which was 

inherent, can be divided to 4 main classes and they were spectral, spatial, texture and 

colour attributes. 

Each one was also separated to its own classes. The WV-2 imagery has 8 spectral bands, 

so spectral information of this imagery included 32 attributes and they were minband_x, 

maxband_x, avgband_x and stdband_x. In table 4.6 the definition of each spectral 

attribute is explained. 
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Table 4.6: Definition of spectral attributes for each band. 

Attribute Description 

Minband_x Spectral - The minimum value of the pixels comprising the 

region in band x. 

Maxband_x Spectral - The maximum value of the pixels comprising the 

region in band x. 

Avgband_x Spectral - The average value of the pixels comprising the region 

in band x. 

Stdband_x Spectral - The standard deviation value of the pixels comprising 

the region in band x. 

The second inherent information of the image was spatial attributes. Spatial information 

was divided to 14 attributes, which included area, length, compact, convexity, solidity, 

roundness, form_factor, elongation, rect_fit, maindir, majaxislen, minaxislen, numholes 

and holsolrat. Different trees have different area and length, so the related information 

could not be useful to discriminate tree species. Thus in this study, area and length were 

not considered for feature selection, so only 12 spatial attributes were used. The 

definition of each spatial attributes is demonstrated in table 4.7. 

Table 4.7: Definition of spatial attributes. 

Attribute Description 

Area Spatial - Total area of the polygon, minus the area of the holes. 

Length Spatial - The combined length of all boundaries of the polygon, 

including the boundaries of the holes. 

Compact Spatial - A shape measure that indicates the compactness of the 

polygon. 

Convexity Spatial - Polygons are either convex or concave. This attribute 

measures the convexity of the polygon. 

Solidity Spatial - A shape measure that compares the area of the polygon to the 

area of a convex hull surrounding the polygon. 

Roundness Spatial – A shape measure that compares the area of the 

polygon to the square of the maximum diameter of the polygon. 

Form_Fact

or 

Spatial - A shape measure that compares the area of the polygon to the 

square of the total perimeter. 

Elongation Spatial - A shape measure that indicates the ratio of the major axis of 

the polygon to the minor axis of the polygon. 

Rectangula

r_Fit 

Spatial - A shape measure that indicates how well the shape is 

described by a rectangle. 
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Maindir Spatial - The angle subtended by the major axis of the polygon 

and the x-axis in degrees. 

Majaxislen Spatial - The length of the major axis of an oriented bounding 

box enclosing the polygon. 

Minaxislen Spatial - The length of the minor axis of an oriented bounding 

box enclosing the polygon. 

Numholes Spatial - The number of holes in the polygon. Integer value. 

Holesolrat Spatial - The ratio of the total area of the polygon to the area of the 

outer contour of the polygon. 

The third information which is extracted from WV-2 image was texture attributes. Since 

the trees have different texture, the textural attributes can be helpful to discriminate 

different tree species. The definition of the texture attributes is defined in table 4.8. 

Table 4.8: Definition of texture attribures. 

Attribute Description 

Tx_range Texture - Average data range of the pixels comprising the region 

inside the kernel. 

Tx_mean Texture - Average value of the pixels comprising the region inside 

the kernel. 

Tx_variance Texture - Average variance of the pixels comprising the region 

inside the kernel. 

Tx_entropy Texture – Average entropy value of the pixels comprising the 

region inside the kernel. 

The last and very important attributes in this study was colour space and band ratio 

attributes. Two new bands of WV-2 imagery (Red-edge and NIR2) were effective to 

detect vegetation, thus in this study not only the common band ratio of vegetation which 

is NDVI index [(Red-NIR1)/(Red+NIR1)] is used, but also the band ratio of the Red-

edge and NIR2 is considered, which are as following: 

Band ratio 5/7: (NIR1- Red) / (NIR1+Red) 

Band ratio 5/8: (NIR2 - Red) / (NIR2+ Red) 

Band ratio 6/7: (NIR1- Red Edge) / (NIR1+ Red Edge) 

Band ratio 6/8: (NIR2 - Red Edge) / (NIR2+ Red Edge) 

In conclusion the total number of attributes before feature selection that were used in this 

study was 55 attributes (32 spectral, 12 spatial, 4 texture, 4 band ratio and 3 color space). 

The definition of the color space and band ratio attributes is explained in table 4.9. 
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Table 4.9: Definition of the color space and band ratio attributes. 

Attribute Description 

Band Ratio Band Ratio - Computes a normalized band ratio between two bands, 

using the following equation: (B2– B1) / (B2 + B1 + eps) 

Color Color Space - Compute HSI color space attributes. 

Hue Color Space – Hue is often used as a color filter and is measured in 

degrees from 0 to 360. 

Saturation Color Space – Saturation is often used as a color filter and is 

measured in floating-point values that range from 0 to 10. 

After computation of all attributes, in order to utilize the attribute variables of each 

segment the ArcGIS software was used to export the segments to a vector layer. Figure 

4.6 shows part of the vector layer, which was extracted by Envi Ex and was opened in 

ArcGIS. In the figure the segments that their boundary is light blue (means selected), 

some of them are defined as a training data, which was used for attribute selection by 

WEKA software. 

In the attribute table of the vector layer each row demonstrate each segment with its 

computed attributes, and each field or column shows all values of one attribute. In order 

to create a training data, in situ observation was done and 9 classes were categorized, and 

then based on the field survey some segments are defined as a training data. The number 

of segments that was allocated for training data is mentioned in Table 4.10, and the 

extracted attributes of some training segments are shown in appendix C. 

Figure 4.8 Part of vector layer which, was exported from feature extraction 
module. Some segments were selected and defined as a training data.
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 Table 4.10: The number of segments for each class in the 

 training data. 

Training (UPM Campus) Number of Segments 

M. Ferrea 70 

S. Saman 52 

C. Sumatrana 42 

Other trees 60 

Grass 110 

Water 2 

Road 42 

Building 55 

Shadow 80 

Since the analysis of 55 attributes to develop a generic rule sets was hard and time 

consuming, thus the attribute selection module by WEKA software was utilized to deduct 

some attributes and select the most efficient attributes to discriminate urban classes. In 

this study the CfsSubsetEval was used as a subset evaluator to define which attributes 

were the most appropriate to distinguish different urban classes. 

The results show that from 55 attributes, only 26 were selected which were: 

Compact, Maindir, Minaxislen, Band ratio5/7, Band ratio 5/8, Band ratio 6/7, Hue, 

Saturation, Tx_range, Tx_variance, Tx_entropy, Minband_1, 3, 5 and 6, Maxband_1, 

Avgband_1, 2, 3, 4 and 8, Stdband_2, 3 , 6, 7 and 8. 

Table 4.11 shows the definition of the selected attributes by Cfs Subset Evaluator in 

WEKA software. 

  Table 4.11: Definition of selected attribute by Cfs Subset Evaluator. 

Attribute Description 

Minband_x Spectral - The minimum value of the pixels comprising the 

region in band x. 

Maxband_x Spectral - The maximum value of the pixels comprising the 

region in band x. 

Avgband_x Spectral - The average value of the pixels comprising the 
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region in band x. 

Stdband_x Spectral - The standard deviation value of the pixels 

comprising the region in band x. 

Compact Spatial - A shape measure that indicates the compactness of the 

polygon. 

Maindir Spatial - The angle subtended by the major axis of the polygon and 

the x-axis in degrees. 

Minaxislen Spatial - The length of the minor axis of an oriented bounding 

box enclosing the polygon. 

Tx_range Texture - Average data range of the pixels comprising the region 

inside the kernel. 

Tx_variance Texture - Average variance of the pixels comprising the region inside. 

Tx_entropy Texture – Average entropy value of the pixels comprising the region 

inside the kernel. 

Band Ratio Band Ratio - Computes a normalized band ratio between two bands, 

using the following equation: (B2– B1) / (B2 + B1 + eps) 

Hue Color Space – Hue is often used as a color filter and is measured in 

degrees from 0 to 360. 

Saturation Color Space – Saturation is often used as a color filter and is 

measured in floating-point values that range from 0 to 10. 

After attribute selection by Cfs Subset Evaluator, with the aim to gain the attribute 
coefficients, the fisher’s model in SPSS was used to discriminate the attributes to achieve 

the coefficients. Eight functions were achieved by SPSS analysis. After that 

unstandardized coefficient results were considered as the attributes coefficients. 

In this research the attributes coefficients for Samanea Saman species were different 

from Casuarina Sumatrana and Mesua Ferrea Species. For computing the attribute 

coefficients for C.Sumatrana, 4 random segments of this species were selected and were 

added to the training data for SPSS analysis. Tables 4.12 and 4.13 show the attributes 

coefficients of each function for S. Saman, C.Sumatrana and M.Ferrea respectively.
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 Table 4.12: Attributes Coefficients for Samanea Saman species. 

Function 1 Function 2 Function 3 Function 4 Function 5 Function 6 Function 7 Function 8 

COMPACT 1.37 1.849 7.661 0.533 -6.365 12.765 -1.327 -1.412 

MAINDIR -0.001 -0.001 0.001 -0.001 0.002 -0.004 0.005 0.001 

MINAXISLEN .001 -.078 .359 .180 -.093 .028 -.026 -.025 

BANDRATIO 5/7 27.736 2.815 3.620 35.912 36.427 30.692 28.332 31.865 

BANDRATIO 5/8 -5.972 14.725 -8.358 -19.566 -22.888 -44.417 -14.146 -31.560 

BANDRATIO 6/7 -24.833 1.925 -3.365 -1.878 -10.881 33.856 -37.204 -11.815 

HUE -.003 .002 .002 -.012 .018 .009 -.002 -.005 

SATURATION 1.873 6.937 .633 -8.812 -2.905 -1.036 1.140 2.216 

TX_RANGE -.012 .002 .003 .009 -.012 .000 -.005 -.002 

TX_VARIANC .000 .000 .000 .000 .000 .000 .000 .000 

TX_ENTROPY 13.839 14.090 -7.268 25.187 28.733 -10.944 -13.614 124.497 

MINBAND_1 .004 -.002 -.001 .005 -.009 .017 .003 .018 

MAXBAND_1 -.004 -.004 -.005 .002 .004 .000 -.002 .005 

AVGBAND_1 .006 .012 .022 -.015 .007 -.030 -.036 .000 

AVGBAND_2 -.007 .000 -.016 .014 -.016 .005 .038 -.016 

STDBAND_2 .012 -.003 -.006 -.025 .016 -.010 -.013 .003 

MINBAND_3 -.001 -.005 -.003 .004 -.004 -.004 -.020 .005 

AVGBAND_3 -.003 -.002 .008 -.011 -.004 -.003 -.017 .004 

STDBAND_3 .006 .007 .008 .039 .001 -.007 .030 .000 

AVGBAND_4 .003 .003 -.006 .007 .013 .009 -.001 .000 

MINBAND_5 .001 .003 .002 -.003 .007 -.003 .015 -.005 

MINBAND_6 -.002 -.001 .003 -.001 -.001 .001 .001 -.002 

STDBAND_6 -.007 .000 -.006 .004 -.014 .020 -.008 .004 

STDBAND_7 .000 -.001 .003 -.004 -.002 -.010 -.007 -.006 

AVGBAND_8 .001 -.004 -.001 -.001 -.001 .000 .001 .002 

STDBAND_8 -0.001 -0.001 0.005 -0.005 0.004 0.007 0.014 0.003 

(Constant) 
-7.413 -8.845 -3.804 -8.965 -2.140 1.734 16.358 -30.644 
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 Table 4.13: Attributes Coefficients for Mesua Ferrea and Casuarina Sumatrana species. 

Function 1 Function 2 Function 3 Function 4 Function 5 Function 6 Function 7 Function 8 

COMPACT 1.575 1.687 8.090 1.079 -6.070 12.978 -.249 -2.857 

MAINDIR -.001 -.001 .001 -.002 .002 -.003 .005 .001 

MINAXISLEN -.001 -.071 .356 .185 -.087 .029 -.019 -.032 

BANDRATIO 5/7 27.203 3.323 2.593 34.614 37.844 31.012 23.932 34.934 

BANDRATIO 5/8 -5.527 14.380 -7.911 -18.858 -23.744 -44.060 -9.020 -34.323 

BANDRATIO 6/7 -24.981 2.011 -3.268 -1.966 -11.108 32.219 -39.493 -11.990 

HUE -.003 .002 .002 -.012 .018 .009 -.003 -.005 

SATURATION 2.327 6.540 .825 -8.017 -3.025 -1.166 -.011 3.046 

TX_RANGE -.012 .002 .002 .010 -.012 .000 -.006 -.002 

TX_VARIANC .000 .000 .000 .000 .000 .000 .000 .000 

TX_ENTROPY 13.021 15.080 -7.991 22.938 29.146 -12.622 -14.460 120.541 

MINBAND_1 .003 -.001 .000 .004 -.009 .017 .005 .016 

MAXBAND_1 -.004 -.004 -.005 .002 .004 .000 -.002 .005 

AVGBAND_1 .007 .013 .022 -.016 .006 -.032 -.034 -.002 

AVGBAND_2 -.006 .000 -.016 .015 -.015 .006 .036 -.013 

STDBAND_2 .011 -.003 -.005 -.026 .015 -.009 -.008 -.002 

MINBAND_3 -.001 -.004 -.003 .004 -.004 -.006 -.021 .005 

AVGBAND_3 -.003 -.002 .009 -.010 -.005 -.004 -.016 .002 

STDBAND_3 .006 .008 .006 .038 .002 -.006 .027 .004 

AVGBAND_4 .003 .004 -.006 .006 .013 .009 -.002 .000 

MINBAND_5 .001 .003 .002 -.003 .007 -.002 .015 -.004 

MINBAND_6 -.002 -.001 .004 -.001 -.001 .001 .001 -.002 

STDBAND_6 -.007 -.001 -.005 .005 -.014 .020 -.009 .004 

STDBAND_7 .000 -.001 .003 -.004 -.003 -.010 -.007 -.006 

AVGBAND_8 .002 -.004 -.001 -.001 -.001 .000 .001 .002 

STDBAND_8 -.001 -.001 .005 -.006 .004 .007 .014 .004 

(Constant) -5.964 -9.203 -3.685 -8.482 -2.266 2.512 15.740 -28.334 
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Moreover in order to develop the generic rule, the functions at group centroids were utilized. Group centroids were the unstandardized canonical 

discriminant functions, which were evaluated at group means. Tables 4.14 and 4.15 demonstrate the group centroids of S.Saman, M.Ferrea and 

C.Sumatrana respectrively. 

Table 4.14: Functions at group centroids for Samanea Saman species genric rule. 

Function 

1 

Function 

2 

Function 

3 

Function 

4 

Function 

5 

Function 

6 

Function 

7 

Function 

8 

M.Ferrea 1.123 2.352 -0.673 0.505 0.345 1.105 0.146 0.128 

S.Saman 2.936 0.457 0.513 1.102 0.653 -0.995 0.57 0.108 

C.Sumatrana 0.348 2.422 -0.386 0.156 -0.108 -0.68 -0.932 0.238 

Other trees 1.791 1.17 -0.296 0.42 0.192 -0.058 -0.201 -0.454 

Grass 3.067 -3.236 -0.144 -0.492 -0.364 0.15 -0.067 0.04 

Water -2.783 -3.208 17.061 6.164 -2.169 2.06 -1.052 0.006 

Road -5.225 -2.05 0.551 -0.637 2.205 0.062 -0.125 -0.002 

Building -6.083 -1.444 -1.218 1.173 -1.075 -0.115 0.127 -0.009 

Shadow -1.64 2.095 1 -1.505 -0.678 -0.131 0.239 -0.015 
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Table 4.15: Functions at group centroids for Mesua Ferrea and Casuarina Sumatrana species generic rule. 

Function 

1 

Function 

2 

Function 

3 

Function 

4 

Function 

5 

Function 

6 

Function 

7 

Function 

8 

M.Ferrea 1.127 2.325 -.695 .476 .369 1.133 .096 .141 

S.Saman 2.923 .459 .468 1.077 .688 -.959 .619 .114 

C.Sumatrana .299 2.402 -.327 .132 -.121 -.766 -.892 .212 

Other trees 1.787 1.152 -.317 .400 .205 -.044 -.169 -.472 

Grass 3.047 -3.274 -.118 -.462 -.376 .141 -.080 .042 

Water -2.816 -2.929 16.930 6.388 -1.956 2.003 -1.103 -.013 

Road -5.226 -2.051 .570 -.708 2.189 .043 -.131 -.003 

Building -6.084 -1.445 -1.230 1.184 -1.046 -.099 .136 -.008 

Shadow -1.590 2.067 1.016 -1.460 -.719 -.093 .266 -.015 

Figure 4.9 shows plot analysis of M.Ferrea, S.Saman and C.Sumatrana, which are the example of correlation between two functions and their group 

centroids. Whatever the circles (tree species) are gathered near the group centroid, it means the function coefficients is more suitable to distinguish 

the mentioned class from the other classes. Thus the figure shows that the mentioned function coefficients were appropriate to detect tree species 

due to the high correlation between the group centroid and the species. 
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Figure 4.9: Discriminate functions analysis in related to group 
centroids, for M.Ferrea (a), S.Saman (b) and C.Sumatrana (c). 



© C
OPYRIG

HT U
PM

58 

To assess and consider the significance of the functions that were extracted from the 

fisher’s model result the eigenvalue table was used which showed the model make 

possible to predict the S.Saman, M.Ferrea and C.Sumatrana with 100% accuracy 

statistically respectively by utilizing all these eight functions (APPENDX E and F).  

In this study, 26 predictor variables in 8 different functions, which came after fisher’s 

model, were extracted based on the training data. In order to compare the influence of 

using all 8 functions and less than 8 functions, the generic rule was applied two times. 

The first time all 8 functions, and the second time only 6 functions were used. 

As an example, some functions of Samanea Saman were calculated as follows: 

Function1 for Segment1: (Compact_Segment1) *1.37+(Maindir_Segment1)*-0.001+ 

(Minaxislen_Segment1)*0.001+(BandRatio5/7_Segment1)*27.736+…+(Stdband_8_S

egment1)*-0.001+ (-7.413) 

Function2 for Segment1:  

(Compact_Segment1)*1.849+(Maindir_Segment1)*-0.001+ (Minaxislen_Segment1) *-

.078+(BandRatio5/7_Segment1)*2.815+…+(Stdband_8_Segment1)*-0.001+  

(-8.845) 

. 

. 

. 

Function8 for Segment(n): (Compact_Segment(n))*-1.412 + 

(Maindir_Segment(n))*0.001+(Minaxislen_Segment(n)) * -0.025 + 

(BandRatio5/7_Segment(n)) * 31.865 + … + (Stdband_8_Segment(n))* 0.003 + (-

30.644) 

After calculation of all functions for each segment, in order to predict the classes of the 

segments, the Cartesian distance according to the group centroids, which were given in 

Tables 4.14 and 4.15 was computed. The generic rule sets were applied on the UPM 

campus image to evaluate the accuracy of the new model to predict S.Saman, M.Ferrea 

and C.Sumatrana species. Figure 4.10 and 4.11 shows the predicted result of the tree 

species (from 8 functions and 6 functions respectively) based on the generic rule sets in 

UPM campus. 
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Figure 4.10: Predicted results of Mesua Ferrea, Samanea Saman and Casuarina Sumatrana species based on the 
new generic rule sets (8 functions). 
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Figure 4.11: Predicted results of Mesua Ferrea, Samanea Saman and Casuarina Sumatrana species based on the 
new generic rule sets (6 functions). 
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Before applying the generic rule sets to predict the tree species, the rule sets depended 

on each tree species can be filtered by area attribute to improve the generic model. For 

instance for S.Saman trees, since this tree was large, so the segments which their area 

was roughly larger than 30 meters was filtered for S.Saman rule sets. 

A standard confusion matrix was used in combination with ground truth data obtained 

through in situ observation to define the quantitative accuracy of the results. Table 4.16 

exhibits the accuracy of the generic rule sets based on the 8 and 6 functions to detect 

urban tree species. 

Since the overall accuracy of the rule set by using 8 functions were significantly higher 
than using 6 functions (about 68.40% higher), so the generic rule set was defined based 

on all 8 functions. 

To verify the transferability and accuracy of the model in a more comprehensive way 

and without using training data, the model was applied to different WV-2 images and 

independent area. For this purpose part of Kuala Lumpur and Serdang were selected as 

the validation area. The following figures (figures 4.12, 4.13 and 4.14) have shown the 

predicted results of the tree species in different areas.  

Table 4.16: Accuracy of the rule sets to predict urban tree species, including 

M.Ferrea, S.Saman and C.Sumatrana, based on 8 and 6 functions. 

Prod. Acc (%) 

(8 functions)     (6 functions) 

User Acc. (%) 

 (8 functions)     (6 functions) 

M. Ferrea  63.20  33.52  100  95.70 

S. Saman  97.87  8.55  100  100 

C.Sumatrana  73.84  45.36  96.96  32.70 

Overall 

Accuracy 

 86.87  18.47 

Kappa 

Coefficients 

 0.7561  0.12 
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Figure 4.12: Transferability of the generic rule-sets to detect Messua Ferrea species in 

the validation area (Jalan Sungai Besi, Serdang) without any training data. 
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Figure 4.13: Transferability of the generic rule-sets to detect Samanea Saman species in 

the validation area (Jalan Syed Putra, Kuala Lumpur) without any training data. 

Other Trees 
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The accuracy, which was achieved by the new model to predict tree species on the 

validation areas are shown in table 4.17. 

Figure 4.14: Transferability of the generic rule-sets to detect Casuarina Sumatrana 

species in the validation area (MARDI, Serdang) without any training data. 

Other Trees 
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Table 4.17: Accuracy of the generic rule sets to predict urban tree species on the 

validation areas, without any training data. 

4.6 Discussion 

The main objective of this research was to develop a new generic rule sets that had the 

transferability on different areas to detect urban tree species namely Mesua Ferrea, 

Samanea Saman and Casuarina Sumatrana, based on the limited training data by using 

the economical VHR imagery such as World View-2 image. Pixel-based classification 

can classify images more quickly than object-based classification. Thus in this research, 

ML and SVM were used to illustrate and evaluate the level of improvement achieved by 

object-based classification. 

In this study, ML and SVM spectral-based classifiers were applied on the UPM campus 
image and they were lead to low-accuracy results. The pixel-based SVM performed 

better than the ML classifier because of the limitation of the latter in terms of extracting 

the spectral characteristics of each pixel. 

The accuracy assessment of the pixel-based classifications clearly demonstrated the 

potential of SVM techniques for detection of urban trees in comparison to ML classifier. 

Although the producer’s accuracy of M.Ferrea detection by ML classifier was higher 

than SVM, the other classes’ accuracy was less. Moreover the difference between 

producer’s and user’s accuracy for whole classes by MLC is too high, from 32.61% to 

57.05% that means this classification is not suitable to classify urban areas. 71.07% 

Overall classification accuracy (k= 0.45) was achieved using SVM in contrast to the 

overall accuracy of ML classification which was 65.68%, with a kappa coefficient of 

0.39. The highest and lowest accurcy of urban tree species by SVM classifier was for 

S.Saman and M.Ferrea respectively. Nevertheless, the SVM classifier still classified 

image inappropriately due to  the lack of awareness regarding fine spatial and textural 

features. 

Jalan Syed Putra, KL Mardi, Serdang Jalan Sungai Besi, 

Serdang 

Prod. 

Acc(%) 

User 

Acc.(%) 

Prod. 

Acc(%) 

User 

Acc. (%) 

Prod. 

Acc(%) 

User 

Acc. (%) 

M. Ferrea - - - - 62.85 100 

S. Saman 94.92 100 - - - - 

C.Sumatrana - - 70.69 100 - - 

Overal 

Accuracy 
81.80 76.79 70.84 

Kappa 

Coefficients 
0.7639 0.6742 0.6063 
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Summary of the pixel-based classifications shows that overall accuracy increased from 

65.68% to 71.07% (up to 5.39%) with SVM classification. Thus, SVM may be superior 

to the ML classifier when the spectral similarity of urban targets was high. The poor 

accuracy in both ML and SVM was recognized to the fact of spectral similarity between 

these classes, including S.Saman, M.Ferrea, C.Sumatrana, other trees and grass. In 

addition a visual interpretation indicates many misclassifications of S.Saman and 

M.Ferrea, as well as of other tree species, also the boundary of the tree edges is difficult 

to detect. Therefore based on the spectral-based classifications the methods of 

discriminating different tree species are difficult to develop. 

Hence, the object-based classification was used to overcome the pixel-based 

classification limitation. To this end, information on various spectral, spatial, textural 

and colour attributes was used. The high spatial resolution of WV-2 imagery provides 

high-level spatial heterogeneity from natural surfaces. The spectral diversity of the land 

cover classes was also highlighted in terms of the increased spectral resolution in this 
type of imagery and new bands in WV-2 imagery facilitated the discrimination of 

different tree species. 

Segmentation and merging in object-based classification were important steps in 
generating image objects and computing attributes. The selection of low segmentation 

(20) and moderate merging scales (65) which combined the similar adjacent segments to 

overcome over-segmentation assisted in the detection of the boundaries and shapes of 

different tree species. Therefore, the value of the segmentation and merging will be 

affected on the final result of the object-based classification. 

In order to evaluate the potential of WV-2 imagery, at first the object-based classification 

based on trial and error (manually) was applied. The first specific objective of this 

research was to evaluate the performance of pixel-based and object-based image analysis 

(OBIA) methods for detection of urban tree species. Thus the result of object-based 

classification manually shows that the overall accuracy of detecting tree species was 

enhanced by up to 12.55% in compare to pixel-based classification, and the result 

emphasis on the object-based classification power to discriminate urban tree species.  

The next step was developing a generic model to detect urban tree species through OB 

classification. In order to utilize and optimise the attributes information of the segments 

to prepare the attributes for developing the generic rule-sets to predict the urban tree 

species, Cfs Subset Evaluator was applied to select the most effective attributes for 

discriminating urban classes, especially urban tree species. The result of the mentioned 
method for attribute selection was demonstrated that from 55 attributes, 26 of them were 

selected which included 3 spatial, 5 color, 3 texture, 15 spectral. To achieve the 

coefficients of the selected attributes, Fisher’s method analysis was applied on the 

selected attributes and 8 functions were extracted from the analysis results. The 

eigenvalue table shows that if the all 8 functions used as the generic rule, this model can 

predict the tree species with 100% accuracy statistically. 

However the number of spectral attributes which were selected, was more than other 

attributes, the weight of coefficients has shown that band ratio 5/7, band ratio 5/8, band 

ratio 6/7, tx_entropy, saturation and compact were more significant attributes than others 

to discriminate urban tree species. Therefore, the band ratio, texture and spatial attributes 

were more effective than spectral attributes to discriminate urban tree species. Moreover, 
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the attributes have shown the new bands of WV-2 imagery are obviously effective to 

discriminate urban tree species. 

Finally based on the 8 functions and by considering the Cartesian distance, the new 

generic model was developed from WV-2 UPM imagery. At first to evaluate the generic 

rule accuracy, the model was applied on the UPM imagery, and then to assess the 

prediction accuracy and the transferability of the rule, it was applied on different areas. 

The overall accuracy of this generic model was significantly higher than pixel-based 

classification. By utilization of object-based classification in WV-2 the discriminating 

accuracy of the species for M.Ferrea, S.Saman, and C.Sumatrana species was enhanced 

by up to 15.54% and the number of misidentified objects also reduces. The results 

confirmed the efficiency of derive information means 26 attributes related to spatial, 

spectral, color and textural information extracted from the WorldView-2 image, rather 

than the traditional method (ML) and SVM which utilizes the spectral information with 

approximately 65.68% and 71.07% overall accuracy respectively. Therefore by pixel-

based classifications urban tree species are difficult to detect because of the spectral 

similarities among classes and the confusion among different urban materials. Moreover 

in compare to manually object-based classification, the accuracy of generic model was 

improved about 3.25%. 

The second specific objective of this study was to develop a new generic rule set to 
discriminate urban tree species based on an OBIA by utilizing spectral, spatial, color and 

texture information. Accordingly the results of the generic rule show that the model can 

predict the mentioned trees with an overall accuracy of approximately 86.87% and a 

Kappa coefficient of 0.76. Thus the second objective of this research is achieved by the 

mentioned results. Based on the literature review (chapter 2), the study on urban tree 

species detection by using WV-2 and OBIA were too rare. By the way, two recent 

studies, which were more similar to this research, were considered for comparison. The 

first difference was the classification method through OBIA. In study by Verlic et al. 

(2014) and Li et al. (2015), the SVM method applied, but in this research the OBIA was 

done based on the creating a rule set. The second difference was the ancillary data 

(satellite imageries or LiDAR data), which were used in the previous studies, however 

in this research only WV-2 imagery was used which is more economical. Finally the last 
and most important difference is the transferability of the generic rule sets. The previous 

studies classifications were not transferable to other study areas; conversely the generic 

rule set that is achieved through this study is transferable on different study areas. 

Consequently to verify accuracy of the model in a more comprehensive way and without 

using training data, the model was applied to different WV-2 images and independent 

area. The results that achieved by generic rule-sets on the validation areas (Jalan Syed 

Putra /Kuala Lumpur, Mardi/Serdang, and Jalan Sungai Besi/Serdang), has proved the 

transferability of the generic model to predict urban tree species (M.Ferrea, S.Saman and 

C.Sumatrana) producer’s accuracies for the image 62.85%, 94.92%, 70.69%, and user 

accuracies’100% for all images. So the third specific objective of this study, which was 

to validate the transferability of the new generic rule set in other study areas, is achieved. 

These results demonstrate various advantages of the OB approach such as the extracting 

all attributes information from the segments and its capability of combining spatial, 

texture, color and band ratio as well as spectral information into the classification. 
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By assessing the accuracy of the OB classification on UPM imagery and validation areas, 

it should be noted that both accuracy is high for S.Saman so it can be said the rule set 

acquired for S.Saman based on segmentation can detect this type of tree with 94.92% 

accuracy. Since the accuracy of S.Saman detection is high and the number of S.Saman 

segments is near to the real numbers, thus the OB classification based on the segments 

could be helpful for counting trees in urban area.  In this study based on the field 

measurement in UPM campus area, 41 S.Saman species is detected, however the number 

of segments of S.Saman by generic rule is 45 segments. Thus if we consider each segment 

equal to one tree, the number of S.Saman trees by the generic rule is 45, and the error in 

counting can be occurred due to the large width of S.Saman trees which leads to divided 

some trees into two or more segments. Therefore the OB classification specially the 

segmentation step might be helpful for urban tree counting. 

Among the urban tree species in this study, the lowest accuracy allocated to M.Ferrea 

species. This misclassification is caused by the size of the M.Ferrea trees which were 
too young and small, so the different segmentation scale might be improved the accuracy 

of M.Ferrea species. Moreover similarities in texture and high-grade spectral variability 

within classes that are affected by sun angle, and shadows might be lead to the 

misclassification. 

In conclusion, spectral, spatial, color, band ratio and textural attributes are applied to 

develop new generic model in order to discriminate urban tree species. This model 

demonstrates a good potential for predicting and discriminating different urban tree 

species such as Mesua Ferrea, Samanea Saman and Casuarina Sumatrana trees from 

the WV-2 imagery. 
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  CHAPTER 5 

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS 

FOR FUTURE RESEARCH 

5.1 Introduction 

The general conclusion of this thesis is the successfulness in automated urban tree species 

detection by developing a new generic rule using World View-2 imagery. The first 

section of this chapter will discuss the important conclusions of this research. The second 

part of the chapter will discuss about recommendations for further research in developing 

the methods to extract different tree species in urban areas using VHR resolution 

imagery. 

5.2 Conclusion 

Urban vegetation management has become an important issue because of rapid urban 

development. Rapid urbanization has prompted people to control urban green spaces for 

ecological purposes. Accurate and reliable information on different tree species is crucial 
to urban vegetation studies. This information assists urban planners and researchers in 

urban planning and disaster management. 

Urban spaces are complex areas; hence, accessibility to all trees by field survey is 
extremely difficult and time-consuming. Several studies have been conducted to detect 

tree species; however, the lack of generic rule sets for conducting this detection process 

in urban areas remains a major setback. This study proposed the detection of urban tree 

species from WV-2 imagery by utilizing spectral, spatial, color, band ratio and texture 

information. The species of this research were selected among the most effective and 

popular species of urban trees in tropical areas such as Malaysia which widely used to 

save much energy (Mesua Ferrea and Samanea Saman) and act as effective 

windbreakers (Casuarina Sumatrana). 

With regard to the general objective of this study, that was evaluating the object-based 

classification to detect urban tree species, different classification methods were applied 

to the UPM image which includes the spectral-based classifier methods such as 

traditional methods (ML), advanced method (SVM) and OB classification method which 

was done manually. The results show that the spectral information only, is not sufficient 

for detecting and discriminating between the urban classes especially tree species. The 
overall accuracy of pixel-based analysis increased from 65.68% to 71.07% with SVM, 

and subsequently the object-based method produced more accurate results than ML and 

SVM did at approximately 83.62%. Thus OB approach has potential to discriminate 

urban tree species as the result demonstrated the overall accuracy of the tree species were 

enhanced up to 12.55%. 

One of the limitations in detecting urban tree species using remote sensing data is a lack 

of sufficient training data. Collecting the training data, especially for the different tree 

species is a very difficult task and time consuming. Furthermore, lack of the generic 

model to predict the urban tree species by utilizing very high resolution imagery is 

another gap in urban studies. 
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Hence the main objective of this study is to develop a generic rule for automated urban 

tree species detection based on object-based image analysis (OBIA) methodology on 

WV-2 imagery. The generic model acquired over the UPM campus imagery that 

considers the spectral, spatial, color, texture information of tree species. 

To train the model, the training data were prepared based on a field survey, and all 

training data were extracted only from the UPM image. The segmentation was applied 

to extract the spectral, spatial, texture and color attributes, and then feature selection were 

shown that CfsSubsetEval method is a sufficient attribute evaluator which could selected 

26 attributes from 56 attributes, which were most effective attributes to detect and 

discriminate urban tree species. These attributes by utilizing fisher’s method were able 

to discriminate different urban trees in terms of eight functions and different coefficients. 

The Cartesian distance was used to develop a generic model based on the attributes and 

their coefficients by considering eight fuctions. The results of the generic rule show that 

the model can predict the mentioned trees with an overall accuracy of approximately 

86.87% and a Kappa coefficient of 0.76. 

Finally to assess the transferability of the generic rule sets, the model was applied to 

some other image with no training data in the urban space such as part of Kuala Lumpur 

and Serdang. The results of the generic rule over the validation areas show producer’s 
accuracy of 62.85%, 94.92%, and 70.69% respectively for tree species, namely, 

M.Ferrea, S.Saman, and C.Sumatrana. 

The result of the main objective shows that this model has a good potential to predict and 

detect three urban tree species (M.Ferrea, S.Saman, and C.Sumatrana) without using 

training data from WV-2 images. 

The innovation and benefits of this model are as following: firstly it was developed based 

on the multispectral satellite data which is economical and its processing is fast. Secondly 

this generic model was created based on the statistical approach not by trial and error. 

Thirdly the model fully utilized the attributes information of segments which is acquired 

from WV-2 imagery that includes the spatial, spectral, color, band ratio and texture 

information. Lastly the transferability of this generic model can predict the urban tree 

species without using training data. 

Nevertheless, there are still some limitations that can affect on the result. For instance 

since the study area is an urban area, thus the shadows on the trees which is created by 

high-rise buildings can lead to the misclassification. Moreover according to the fact that 

the segmentation is the most important step in the object-based classification, and there 
is not any absolute scale for the classes, thus the different segment scales can affect on 

the results. 

5.3 Recommendations for Future Research 

The recommended future research is provided to further improve the proposed method. 

In this study three tropical urban tree species which widely used to save much energy 

and act as effective windbreakers is considered for developing the generic rule, and the 
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future work is needed to apply and improve the proposed method to detect and 

discriminate other urban tree species. 

According to the fact that the accuracy of object-based classification is highly dependent 

on segmentation; thus, a new scale might be adjusted for the segmentation step to 

optimize the generic model. 

In the future works the generic model can be developed based on the new high resolution 

satellite imagery such as World View-3 and ancillary data such as LiDAR can be utilized 

to improve the classification accuracy in shadows. Finally this generic model currently 

was applied on different part of Malaysia, and it would be applied on different areas 

outside Malaysia. 
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APPENDIX A 

Satellite and airborne sensors, which were investigated for urban forest studies. 

Spatial 

Resolution Band 

Dynamic 

Range Methods References 

Hyperspectral 5 m 15 nm 
ICARE (3D atmospheric correction code), NDVI-LAI relationship, DSM (0.25 
resolution) Adeline et al. 2013 

Decision tree (DT) classifier Zhang and Qiu 2012 

LAI Hao et al. 2011 

QuickBird 2.44 m multispectral 16 bit 

Super-resolution mapping (SRM) based on Markov random fields (MRF), maximum 

likelihood classifier (MLC) Ardila et al. 2010 

0.61 m panchromatic SRM based on MRF and SVM Ardila et al. 2011 

Reproducible geographic object-based image analysis (GEOBIA) Ardila et al. 2012 

GLCM, VTI building, and NDVI Hong et al. 2009 

Hu 2011 

Global environment monitoring index (GEMI) and NDVI Huang et al. 2007 

R,G,B, NIR Fuzzy multi-threshold classification Li et al. 2010 

DT classifier Zhang et al. 2012 
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MSAVI Puissant et al. 2014 

NDVI, Principle Components Transformation, DT classifier, MLC Ouma and Tateishi 2008 

Hashiba et al. 2004 

Tooke et al. 2009 

MODIS 250 band 1-2 12 bit MODIS EVI and DT classifier Zheng and Qui 2012 

500 band 3-7 

1000 band 8-36 Hao et al. 2011 

Color 

Infrared 

(CIR) DSM (3D), GLCM, SVM Iovan et al. 2008 

Random Forest (RF) Johnson and Xie 2013 

SPOT 10 m 8 bit 
Kong and Nakagoshi 
2005 

20 m 

Zhang et al. 2007 

Liu et al. 2008 

IKONOS 1 m panchromatic NDVI, SR, ARVI, SAVI, LAI Ma and Ju 2011 

4 m multispectral 
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SAR Maksymiuk et al. 2014 

LIDAR Zhu et al. 2012 

Nicholas et al. 2012 

Zhang and Qiu 2012 

Niemeyer et al. 2013 

Sung 2012 

Oshio et al. 2012 and 
2013 

Adeline et al. 2013 

Zhou 2013 

Landsat NDVI and GEMI Huang et al. 2007 

MSS 60 m Zhang et al. 2007 

TM 30 m MLC, NDVI Shouse et al. 2013 

ETM+ 15-30 m MLC, NDVI Peijun et al. 2010 

Hasmadi and Jusoff 2004 

Gong et al., 2013 

RVI, NDVI, PVI, NDBI Cai et al. 2010 
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World-View 2 0.5 m panchromatic 11 bit (RF) classification, Linear discriminant analysis (LDA) Immitzer et al. 2012 

2 m multispectral 

Minimum Distance (MD) classification, Spectral Angle Mapper (SAM), 

NDVI 

Abd Latif et al. 2012 

Nouri et al. 2014 
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APPENDIX B 

Summary of urban tree species detection through remote sensing and different classification methods. 

Sensor 

Acquisition 

date LiDAR 

Classification 

algorithm 

Species 

no. 

Overall 

Acc. Tree species Tree counting References 

ADS40, 

MIVIS Dec 2011 X ML> SAM, SID 10 92.57 

herbaceous, heatland, arundo donax, 

poplar, oak, pine, cypressus, spruce, 

willow, and olive Forzieri et al. 2013 

Landsat TM May 1996 

Supervised > 

Unsupervised 3 61 

Oil Palm, Rubber Tree, Bush, Grass (+ 6 

different landcover types) 

Ismail and Jusoff 

2004 

RIEGL 

LMS-Q560 

Winter 

2006/2007 X DT / ANN 6 

DT: 72 / 

ANN: 95 

Fagus sylvatica, Acer platanoides, Platanus 

acerifolia, Tilia cordata, 

platyphyllos, Aesculus hippocastanum, Hofle et al. 2012 

CIR Sensor 2004 

SVM (texture 

measure) 2 

Plane tree (Platanus Hispanica), lime tree 

(Tilia) 

Tree Crown 

delineation Iovan et al. 2008 

CIR Sensor 2004 SVM 6 

Platanus, Sophora, Tilia, Celtis, Pinus, 

Cupressus 

Tree Crown 

delineation Iovan et al. 2014 

World 

View-2 January 2010 

MD, SAM & 

segmentation 8 0 – 87 

Hopean, Odorata Roxb, Shorea Leprosula, 

Neobalanocarpus Heimii, Gymnacranthera 

Bancana (Ihiq) Sinclair, Rusty 

Sterculia,Palaqium Rostratum, Eugenia 

Oleina, and Dyera Costulata. Tree Counting 

Abd Latif et al. 

2012 

QuickBird 2007 

Segmentation & 

fuzzy multi-

thresholds 

classification 2 93.72 Forest, Grassland, Thick grassland Li et al. 2010 

IKONOS & 

World View 

2 

IKO: April 

2006 / WV-

2: May 2011 

LDA/ 

Regression 

Trees 7 

16% to 

18% 

improved 

Sand live oak, Laural oak, Live oak, Pine, 

Palm, Camphor, Magnolia Pu and Landry 2012 
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by WV-2 

(compare

d with 

Ikonos) 

Aerial & 

LandSat TM 

5 

Aerial: 2006 

& 2009 / 

LandSat: 

2005 & 2007 OB > PB 1 

Aerial 

(HSR): 

94.2 / 

Landsat 

(MSR): 

74.6 Bush honeysuckle (Lonicera maackii) Shouse et al. 2013 

RapidEye 

2009, 

LiDAR: 

2007 X SVM 8 

Pinus, Aesculus, Platanus, Tilia, Acer, 

Populus, Fagus, Quercus Tigges et al. 2013 

QuickBird 2008 X SMA 2 Evergreen & Deciduous species Tooke et al. 2009 

QuickBird March 2007 X SMA / DT 2 

Evergree

n: 80%, 

Deci: 

67% Evergreen & Deciduous species Tooke et al., 2009 

AISA 

July 2004 & 

Oct 2006, 

LiDAR: 

April 2006 X Segmentation 7 

Summer: 

57% / 

Fall: 

56%, 

adding 

LiDAR 

improved 

19% 

Deciduous trees: Gleditsia triacanthos, 

Acer saccharum, Tilia 

Americana, Quercus palustris, Pinus 

strobus, and Picea glauca 

Voss & Sugumaran, 

2008 

Hyperspectr

al, 

LiDAR(Terr

a Remote 

Sensing) 

TRSI 2008 X 

ANN / 

AGFLVQ / 

SAM 20 

AGFLV

Q: 68.8% 

/ SAM: 

39.95 

American Elm, Hackberry, Pecan, Eastern 

Red Cedar, Shumard Red Oak, Tree of 

Heaven, Cedar Elm, Green Ash, Red 

Mulberry, Chinaberry, Gum Bumelia, Bald 

Cypress, Cherry Laurel, Boxelder, Post 

Individual 

Tree detection Zhang & Qiu, 2012 
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Oak, Live Oak, Bur Oak, Cottonwood, 

Crepe Myrtle, Black Willow 
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APPENDIX C 

 Extracted attributes of some training segments from attribute table in ArcGIS. 

AREA LENGTH COMPACT CONVEXITY SOLIDITY ROUNDNESS FORMFACTOR 

30.125000 25.113466 0.246611 1.103701 0.839721 0.533302 0.600238 

60.875000 42.860438 0.205408 1.185872 0.710949 0.418176 0.416424 

331.375000 138.823207 0.147963 1.668304 0.688035 0.403854 0.216075 

ELONGATION RECT_FIT MAINDIR MAJAXISLEN MINAXISLEN NUMHOLES HOLESOLRAT 

1.481744 0.620635 43.118198 8.480705 5.723463 0.000000 1.000000 

1.607464 0.527947 139.459811 13.614287 8.469422 0.000000 1.000000 

1.343264 0.426065 28.606544 32.322322 24.062516 0.000000 1.000000 

BANDRATIO HUE SATURATION INTENSITY TX_RANGE TX_MEAN TX_VARIANC 

0.490368 198.741720 0.171151 0.780583 92.438017 919.727272 2064.350776 

0.401151 198.741126 0.331200 0.718157 63.776423 874.958898 888.134147 

0.576211 195.805167 0.225869 0.839824 28.538346 858.240685 114.804031 



© C
OPYRIG

HT U
PM

87 

TX_ENTROPY MINBAND_1 MAXBAND_1 AVGBAND_1 STDBAND_1 MINBAND_2 MAXBAND_2 

0.182930 850.000000 1064.000000 911.231405 44.594424 813.000000 1183.000000 

0.186265 787.000000 1109.000000 871.439024 35.500882 728.000000 1167.000000 

0.181086 816.000000 955.000000 859.256391 15.779509 758.000000 982.000000 

AVGBAND_2 STDBAND_2 MINBAND_3 MAXBAND_3 AVGBAND_3 STDBAND_3 MINBAND_4 

923.429752 82.128642 656.000000 1072.000000 792.049587 102.566470 564.000000 

838.089431 50.878568 590.000000 1035.000000 666.398374 59.836886 477.000000 

824.706767 23.904683 611.000000 892.000000 704.551128 30.077740 514.000000 

MAXBAND_4 AVGBAND_4 STDBAND_4 MINBAND_5 MAXBAND_5 AVGBAND_5 STDBAND_5 

1128.000000 731.661157 124.494548 556.000000 1192.000000 771.206612 148.403556 

1103.000000 586.597561 80.500048 424.000000 1228.000000 589.813008 97.187498 

866.000000 620.521805 41.898188 453.000000 921.000000 598.772932 52.595647 
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MINBAND_6 MAXBAND_6 AVGBAND_6 STDBAND_6 MINBAND_7 MAXBAND_7 AVGBAND_7 

1173.000000 1618.000000 1404.388430 85.377336 2131.000000 2860.000000 2462.148760 

706.000000 1700.000000 966.398374 180.608619 995.000000 2744.000000 1460.943089 

1146.000000 1700.000000 1441.290977 81.475429 1675.000000 2927.000000 2384.931579 

STDBAND_7 MINBAND_8 MAXBAND_8 AVGBAND_8 STDBAND_8 

159.770808 1847.000000 2583.000000 2255.314050 167.060570 

285.137942 957.000000 2748.000000 1380.008130 296.869352 

178.206095 1526.000000 2688.000000 2227.035338 159.790037 
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APPENDIX D 

Eigenvalues (Samanea Saman) 

Function Eigenvalue % of Variance Cumulative % Canonical Correlation 

1 10.281a 53.8 53.8 .955 

2 5.044a 26.4 80.3 .914 

3 1.619a 8.5 88.7 .786 

4 .931a 4.9 93.6 .694 

5 .717a 3.8 97.4 .646 

6 .337a 1.8 99.1 .502 

7 .131a .7 99.8 .341 

8 .033a .2 100.0 .179 
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APPENDIX E 

Wilks’ 

Lambda table 

(Samanea 

Saman) 

Test of Function(s) Wilks' Lambda Chi-square df Sig. 

1 through 8 .001 3377.305 208 .000 

2 through 8 .012 2179.091 175 .000 

3 through 8 .074 1289.490 144 .000 

Eigenvalues (Mesua Ferrea and Casuarina Sumatrana) 

Function Eigenvalue % of Variance Cumulative % Canonical Correlation 

1 10.140a 53.6 53.6 .954 

2 5.048a 26.7 80.3 .914 

3 1.595a 8.4 88.7 .784 

4 .906a 4.8 93.5 .689 

5 .715a 3.8 97.3 .646 

6 .347a 1.8 99.1 .508 

7 .137a .7 99.8 .347 

8 .035a .2 100.0 .184 
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4 through 8 .193 813.446 115 .000 

5 through 8 .373 488.123 88 .000 

6 through 8 .640 220.690 63 .000 

7 through 8 .856 77.097 40 .000 

8 .968 16.133 19 .648 
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Wilks’ Lambda table (Mesua Ferrea and Casuarina Sumatrana) 

Test of Function(s) Wilks' Lambda Chi-square df Sig. 

1 through 8 .001 3394.166 208 .000 

2 through 8 .012 2192.512 175 .000 

3 through 8 .074 1295.389 144 .000 

4 through 8 .193 819.975 115 .000 

5 through 8 .368 498.405 88 .000 

6 through 8 .631 229.436 63 .000 

7 through 8 .850 80.959 40 .000 

8 .966 17.112 19 .582 
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