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High efficiency motors are being gradually exerted in many industrial applications 

because of their positive impacts on the environment by reducing energy consumption 

and CO2 emission. In this regard, Line Start Permanent Magnet Synchronous Motors 

(LS-PMSMs) have been introduced to the market recently. Due to the unique 

configuration, LS-PMSMs are allowed to reach Super Premium Efficiency levels 

accompanied with high torque and power factor. However, since the use of LS-

PMSMs in industry is in its infancy, no efficient scheme has been reported for faults 

detection in this type of motor. Online monitoring and setting of preventive 

maintenance programs in the industries is one of the important issues. Therefore, in 

order to classify different indices of motor under fault condition, the electrical behavior 

of LS-PMSMs motor under broken rotor bar should be considered and the electrical 

parameters should be characterized. The main aim of this research is to investigate the 

effects of broken rotor bar fault on LS-PMSMs performance, and also to find reliable 

fault-related feature for this fault. The proposed detection strategy for broken rotor bar 

in LS-PMSM is based on monitoring of startup current signal.  In this regard, a 

simulation model and experimental setup for investigation of broken rotor bar in LS-

PMSM is obtained. The current signal is used to extract the fault-related features using 

three different signal processing method. Finally, the ability of these features is 

validated for detection of broken rotor bar in LS-PMSM through statistical analysis. 

This study can be beneficial for the industry by using the online monitoring systems 

where the motor fault can be detected during its operation. Therefore, the proposed 

method can be used in the preventive maintenance programs. 

 

 

This research indicates the importance of load effects on broken bar detection in LS-

PMSMs. The current signal is collected at different load levels of starting torque within 

four steps, which increases from 0% to 65%. The experimental and simulation results 

substantiate that increasing the load, will also increase the starting time duration. The 

time duration of machine with one broken rotor bar also increases compared to healthy 
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condition. The value of starting torque drops in the presence of broken rotor bar fault. 

In the time domain analysis, three features, namely peak to peak, shape factor and 

impulse factor cannot distinguish faulty state of motor from healthy state based on 

upward or downward trend. Skewness also fails to detect broken bar when the starting 

torque is high. In time domain analysis using of envelop signal, four features, namely 

RMS, RSSQ, Energy and Variance cannot distinguish faulty state of motor from 

healthy state at low level load. The variance feature also fails to detect the fault based 

on upward or downward trend. When the starting torque is high, Kurtosis feature is 

not a suitable feature to detect broken rotor bar. In the time-frequency domain analysis, 

Log Energy Entropy feature has satisfactory performances for broken rotor bar 

detection compare to Shannon Entropy feature. The result also presents that the most 

effective sub-band frequency is Detail of level 7 that includes the frequency band 

ranges of [39.06-19.53]Hz. The simulation results were validated with an experimental 

work to confirm the effectiveness of proposed methods. 
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Motor kecekapan tinggi sedang digunapakai secara berperingkat dalam pelbagai 

aplikasi industri kerana kesan positifnya terhadap alam sekitar dengan mengurangkan 

penggunaan tenaga dan pelepasan CO2. Dengan itu, Motor Segerak Magnet Kekal 

Mula Talian (LS-PMSMs) telah diperkenalkan baru-baru ini. Oleh kerana 

konfigurasinya yang unik, LS-PMSMs membolehkan motor untuk mencapai tahap 

kecekapan super premium dengan disertai  tork dan faktor kuasa yang tinggi. Walau 

bagaimanapun, sejak penggunaan LS-PMSMs dalam industri di peringkat awal, tidak 

ada lagi sistem cekap yang dilaporkan untuk mengesan kerosakan motor ini. 

Pemantauan dalam talian dan penetapan program penyelenggaraan pencegahan dalam 

industri adalah salah satu isu penting. Oleh itu, untuk mengelaskan indeks motor yang 

berbeza dalam keadaan rosak, tingkah laku elektrik motor LS-PMSMs di bawah bar 

rotor pecah perlu dipertimbangkan dan parameter elektrik harus dicirikan. Matlamat 

utama kajian ini adalah untuk mengkaji kesan kerosakan bar rotor pecah pada prestasi 

LS-PMSMs, dan untuk mencari ciri-ciri kaitan kerosakan ini. Strategi pengesanan 

untuk bar rotor pecah pada LS-PMSM dicadangkan di sini di mana ianya adalah 

berdasarkan pemantauan isyarat semasa permulaan. Dalam hal ini, model simulasi dan 

persediaan eksperimen untuk siasatan bar rotor pecah dalam LS-PMSM diperolehi. 

Isyarat semasa digunakan untuk mengekstrak ciri yang berkaitan dengan kerosakan 

menggunakan tiga kaedah pemprosesan isyarat yang berbeza. Akhir sekali, keupayaan 

ciri-ciri ini disahkan untuk mengesan bar rotor pecah dalam LS-PMS motor melalui 

analisis statistik. Kajian ini boleh memberi manfaat kepada industri dengan 

menggunakan sistem pemantauan dalam talian di mana kerosakan motor boleh dikesan 

semasa operasinya. Oleh itu, kaedah yang dicadangkan boleh digunakan dalam 

program-program penyelenggaraan pencegahan. 

 

 

Kajian ini menunjukkan betapa pentingnya kesan beban pada pengesanan bar rotor 

pecah dalam LS-PMSMs.  Isyarat semasa dikumpulkan dalam tahap beban yang 

berbeza pada tork yang bermula dalam empat langkah, yang meningkat dari 0% hingga 
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65%. Keputusan eksperimen dan simulasi mengesahkan bahawa peningkatan beban 

akan juga meningkatkan tempoh masa permulaan. Tempoh masa mesin dengan satu 

bar rotor pecah juga meningkat jika berbanding keadaan normal. Selain itu, bar rotor 

pecah juga memberi kesan pada kejatuhkan nilai permulaan tork. Dalam analisis 

domain masa, tiga ciri, iaitu puncak ke puncak, faktor bentuk dan faktor dorongan 

tidak dapat membezakan kerosakan nyata motor dalam keadaan normal berdasarkan 

trend ke atas atau ke bawah. Kepencongan juga gagal untuk mengesan bar rotor pecah 

apabila permulaan tork tinggi. Dalam analisis domain masa menggunakan isyarat 

envelop, empat ciri, iaitu RMS, RSSQ, Tenaga dan Varians tidak dapat membezakan 

kerosakan nyata motor pada keadaan normal yang berada pada tahap rendah beban. 

Ciri varians juga gagal untuk mengesan kerosakan berdasarkan trend ke atas atau ke 

bawah. Apabila tork permulaan yang tinggi, ciri Kurtosis adalah tidak sesuai untuk 

mengesan bar rotor pecah. Dalam analisis domain masa-frekuensi, ciri Log Tenaga 

Entropy mempunyai prestasi yang memuaskan bagi pengesanan bar rotor pecah jika 

dibandingkan dengan ciri Shannon Entropi. Keputusan juga menunjukkan sub-band 

frekuensi yang berkesan adalah Perincian Tahap 7 yang merangkumi julat jalur 

frekuensi bagi [39,06-19,53] Hz. Oleh itu, keputusan eksperimen dan simulasi 

menyokong antara satu sama lain dan mengesahkan kerja-kerja secara keseluruhan. 
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CHAPTER 1 

 

INTRODUCTION 

 

In this chapter, after presenting the research problem statement, the aim and 

objectives and scopes of this dissertation are presented. A short background about the 

extent of this research work is discussed and the contribution to the knowledge is 

specified. This chapter ends with the layout of the thesis. 

 

1.1  General Background 

 

Electrical machines facilitate and expedite production processes and related services 

leading to immense changes in the human life style. They are extensively employed 

in the entire aspects of domestic, industrial, commercial, utility and special-purpose 

commercial markets. The rugged configuration of squirrel-cage electrical machines 

(induction machine) with reasonable price and size make them suitable for all these 

applications. The other desired characteristics of squirrel-cage electrical machines 

are their adaptability and operation with an easily available power supply because of 

using squirrel-cage bars. However, induction machines suffer from low efficiency 

and low power factor that means the loss of energy is high. This issue is viewed as an 

important disadvantage because of the energy cost and global energy concerns.  

 

The improvement of induction machine efficiency was examined through an optimal 

design of these motors. However, due to several inherent limitations, it is difficult to 

improve the efficiency of its significantly. An option is to substitute induction 

machine by high efficiency permanent magnet Synchronous motors (PMSMs). An 

important obstacle for ordinary PMSMs is they need inverter to start, which is not 

economical for single speed applications. To overcome this problem, the permanent 

magnet motors equipped with squirrel-cage bars, called Line Start Permanent Magnet 

Synchronous motors (LS-PMSMs), have been introduced. LS-PMSMs also allow 

reaching Super Premium Efficiency levels [1,2]. A LS-PMSM consists of a stator 

(single or poly-phase) and a hybrid rotor comprising electricity conducting squirrel 

cage and pairs of permanent magnet poles. Squirrel-cage bars in electrical machine 

produce adequate high starting torque when the motor is run from standstill. Similar 

to asynchronous motors, squirrel-cage bars in LS-PMSM develop the startup 

performance during motor run up by enabling the rotor to have direct-on-line 

movement. When the load situation is unbalanced or the rotation speed is fluctuated, 

an important role of squirrel-cage bars is to lessen the counter-rotating fields of the 

air gap, which otherwise would lead to significant losses [3]. 

 

In the practical applications, LS-PMSMs are subjected to unavoidable stresses, such 

as electrical, environmental, mechanical and thermal stresses. These stresses produce 

some failures and imperfections in different parts of the LS-PMSMs. The created 

faults disturb the safe operation of the LS-PMSMs, threaten the normal 

manufacturing, and therefore result in the substantial cost penalties. An efficient fault 
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detection technique can reduce the maintenance costs by preventing the high expense 

failures and unscheduled downtimes.  

 

Breakage of the rotor bars is usually the serious failure in the squirrel cage motors, 

because it progressively increase different stresses and also brings possible 

secondary failures in machine. These failures will also reduce the motor efficiency, 

threaten its safe operation, shorten its lifetime and thus increase the operational cost. 

Broken rotor bar generates unbalanced currents and torque pulsation, and as a result 

reduces the developed torque and increases the speed fluctuations of the motor [4]. 

Changes in the rotor current distribution due to bar breakage progressively 

deteriorates the condition of the neighboring bars. For instance, once a bar breaks, 

the current in the neighboring bars increases up to 50% of rated current and overheat 

them [5,6]. The overheated bars bow and cause the rotor bends over that results an 

eccentricity, which causes basic rotor unbalance and a greater unbalanced magnetic 

pull [7]. Broken rotor bar may also cause a shaft vibration that results failures in 

bearing and eccentricity in the air gap [8]. In permanent magnet motor, the extra heat 

can also demagnetize the permanent magnets [9]. During operation of the motor, the 

broken rotor bar may rise out itself, or broken pieces of the rotor bar may exit the slot 

due to the centrifugal force and damage the stator windings or laminations [10]. 

Broken rotor bar is mainly accounted for noise during the motor start-up as well as 

destructive sparking that threatens the operation safety [11]. Accordingly, diagnosis 

of broken bars in electrical machine can preserve its good performance and its 

normal lifetime [12]. As the LS-PMSMs have a hybrid rotor with squirrel-cage bars 

and permanent magnets, it is not distinct from this part, broken rotor bars can also 

occur in this motor.    
 

Manufacturing companies are making great efforts to ensure proper condition of the 

motors by predicting motors imperfection and failures using machinery maintenance 

plan. The maintenance plans are relied on observation of the machines operating 

condition for diagnosing the existent failure at an early stage, i.e. before it causes the 

machines to stop. An operative condition monitoring technique that can manifest the 

situation of electrical machine in order to detect the fault is a key requirement of 

maintenance. This system should be able to detect any change in the machine 

quantities to predict the necessity of maintenance before major breakdown occurs. 

Hitherto, a variety of condition monitoring techniques, which monitor a certain 

parameter of the electrical machines allowing its health to be determined, have been 

developed [13].  

 

1.2  Problem statement 

 

The most recent global motor market survey and forecast assumes that the number of 

low voltage motors sold between 2014 and 2019 will increase by 11% and IE4 

appears on the horizon with 1.5% of the global market share of motors by 2019 [14]. 

The LS-PMSMs are the latest electrical machine selection of researchers owing to 

their high efficiency and power density, quiet operation and compact size. The LS-

PMSMs provide efficiency close to NEMA Super Premium Efficiency standard 
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(IE4). As the number of LS-PMSMs used in different fields is increasing, presence of 

maintenance scheme for fault detection in this type of motor becomes important and 

vital. Early detection of irregularity in the motor with a proper fault diagnosis 

scheme will help to prevent high cost failures and hence reduces maintenance costs 

and more importantly prevents unexpected downtimes that cease the production and 

cause loss of financial income. Since, the productivity of LS-PMSM for various 

applications is in its infancy; the lack of an accurate broken rotor bar fault detection 

technique does not exist and also no research work is reported in this case. 

Accordingly, this research intends to investigate the ability of fault-related features 

for broken rotor bars fault in LS-PMSMs in different signal processing methods.  

 

1.3  Aim and Objectives 

 

The main aim of this dissertation is to study the effects of broken bars that may occur 

in LS-PMSMs on motor performance and propose a fault-related feature indicative of 

this failure in LS-PMSMs. In this respect, relevant papers were accurately surveyed 

and studied to select suitable methods for condition monitoring and signal 

processing. Research methodology was then designed and conducted according to 

the objectives of this dissertation. This study embarks on the following objectives: 

 

 to obtain and simulate a three-phase, 4-pole LS-PMSM with different 

starting torque of case study machine using finite element method in order 

to procure the stator current signal for both healthy and faulty conditions, 

 to investigate the machine performance in the presence of fault, 

 to investigate and validate the statistical fault-related features extracted 

from startup current signal using time domain analysis in order to identify 

the broken rotor bars fault in simulation and experimental study, 

 to investigate and validate the statistical fault-related features extracted 

from the startup current signals using time domain envelope analysis in 

order to identify the broken rotor bars fault in simulation and 

experimental study, and 

 to investigate and validate the features extracted from the startup current 

signals using Wavelet analysis (Time-frequency domain analysis) in order 

to identify the broken rotor bars fault in simulation and experimental 

study. 

 

1.4  Thesis Scope 

 

This dissertation provides a comprehensive study on broken rotor bars fault condition 

monitoring in electrical machine. The main focus is given to introduce features for 

detection of broken rotor bars fault in three-phase, 4-pole LS-PMSM during the 

startup operation condition. Accordingly, the effect of broken rotor bars in case study 

motor is investigated. The accuracy of research outcomes are examined through a 

professional laboratory examination in addition to a simulation performance. The 

influence of starting load on fault-related features is investigated and data acquisition 

has been collected while the motor running at 0%, 21.7%, 43.47% and 65.21% of its 

rated starting torque. Motor current signature analysis has been selected for condition 
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monitoring of the motor during its startup operation. The signals acquired through 

this method are processed using Time and Time-frequency domain to find the feature 

related to the fault detection in LS-PMSM. At the last stage, statistical analysis is 

used to validate the method that proposed for fault detection. 

 

A three-phase, 4-pole LS-PMSM is simulated based on finite element method (FEM) 

using Maxwell 2-D software. The specifications of simulated LS-PMSM and the 

motor used in the laboratory test exactly match. Three phase sinusoidal voltages are 

applied to the motor terminals as windings excitation. To obtain the  startup current 

signal of LS-PMSM, a  transient  solver  with  time  integration  method  based  on  

backward  Euler  is employed. In the simulation method, starting loads are obtained 

and set equal to the load percentages implemented in the experimental activities. 

Either the current signals of stator obtained through simulation or experiment is then 

analyzed to extract the fault-related features for fault detection. The obtained features 

are compared to validate the results and determine the most reliable fault-related 

features.  

 

The area of current research is limited to the objectives mentioned above in order to 

investigate the effect of broken rotor bar in three-phase, 4-pole LS-PMSM. 

Accordingly, investigation on other types of faults, application of further condition 

monitoring methods and other signal processing techniques are beyond the objectives 

of this thesis. 

 

1.5  Contribution of the Thesis 

 

 This work is a new research in broken rotor bar detection in LS-PMSM and 

none of the previous researches published has attempted to detect this fault. 

The reason is LS-PMSM was launched to the market recently, and its 

application is growing gradually. The other reason may be the complexity of 

broken rotor bar detection in LS-PMSM. Detection of broken rotor bar in LS-

PMSM is one of the major contributions of this dissertation.  

 This research attempts to investigate the effects of broken bar on the 

performance of machine through simulation and experimental analyses. 

 The reliable features are proposed for broken rotor bar detection in three-

phase 4-pole LS-PMSM based analysis of transient current signal. The reason 

for monitoring of stator current is its accessibility, being cost effective and 

having noninvasive characteristics.  

 Finally, this research provides remarkable outcomes for further research in 

the area of fault detection techniques in LS-PMSMs. 

 

1.6  Thesis Layout  

 

Chapter one presents a brief introduction on the research background of current 

study. The  research  requirements  are  stated  as  the  problem  statement  to  define  

the  key research aspects used. The aim and objectives of the study are listed to 
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present the focus of the research. Afterward, the scope of research work and relevant 

contributions are highlighted.  

 

Chapter Two provides an extensive literature review related to the dissertation topic. 

The general structure of LS-PMSM is described. The broken rotor bars fault and its 

effects on Squirrel-cage electrical machine are described. Different methods for 

signal acquisition and signal processing with the purpose of fault detection in 

electrical machines are comprehensively documented. The chapter ends with 

research trends in broken rotor bar detection for LS-PMSM. 

 

Chapter three presents the research methodology designed and conducted according 

to the objectives of this dissertation. In the first section of Chapter three, the 

simulation of LS-PMSM with finite element method software is introduced. In the 

second section, full demonstration of experimental set up, devices, instruments is 

explained. In the final section of this chapter, signal-processing methods 

implemented in this case study and features used as fault signature are introduced. At 

the end of chapter, statistical analysis is explained for features validation. 

 

Chapter  four  presents  the  results  and  discussions  on the  effect  of  broken rotor 

bar on startup current captured from LS-PMSM. Different features with three 

methods of signal processing are discussed and statistical analysis is used to validate 

the ability of each methods. The relevant explanations and interpretations on the 

results and observations presented provide a promising conclusion. 

 

Chapter Five finally presents conclusion drawn from this research for broken rotor 

bar detection in three-phase, 4-pole LS-PMSM, as well as recommendations for 

future study that can be implemented in the field of fault detection in LS-PMSM. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

The aim of this chapter is to presents a comprehensive literature review on various 

subjects pertaining to the research activities. First, general principles of line-start 

permanent magnet motors (LS-PMSMs) are described. The focus is then shifted to 

explanations on failures usually observed in different parts of electrical machine. 

Since broken rotor bar detection is the aim of this research, different condition 

monitoring techniques utilized for diagnosis of this failure are introduced and detail 

description on these techniques are presented. The raw signal obtained from 

condition monitoring of electrical machine needs to be analyzed to extract the 

features related to the fault that presents in the machine. Accordingly, the literature 

review section also contains description of signal processing techniques utilized to 

interpret the information obtained from condition monitoring. 

 

2.1  Introduction 

 

In every plant or in any service field that offers advantage to the society, there is an 

electrical machine contributing to the production or services. Electrical machines 

account for 95% of all prime movers in industrialized nations [15]. A major portion 

of supplied energy has been provided to generate  electric  energy  whereas  nearly  

50%  of  the  end-use electricity  is consumed  by  electrical motors [16]. Among 

various types of the electrical machines,  induction machines are consist about 68%, 

including fans, pumps, air compressors, mixers, conveyors and many other industrial 

applications [16]. Despite of their wide range of use, induction machines have 

efficiency and power factor, which are not desired. 

 

An option to address these problems (low efficiency and power factor) is replacing 

induction machines with permanent magnet synchronous motors (PMSMs). 

However, a PMSM have several drawbacks including: they lack the starting torque 

capability comparing to induction machines [17], and they require a variable 

frequency driver (VFD) system to start.  Since VFD is generally expensive, this 

requirement makes usage of PMSMs uneconomical for those applications where the 

speed is constant, like fans, pumps and compressors. Noting that constant speed 

applications form more than 70% of electrical motor applications, however presence 

of VFD also reduces the overall efficiency and increases the price of using the 

PMSMs. Taking into account the mentioned drawbacks of PMSMs, replacing 

induction machines with this type of motor is not considered as an acceptable 

solution. On the other hand, employing electrical machines of high efficiency is 

obligatory as the new standards introduced by national electrical manufacturers 

association (NEMA) and institute of electrical and electronics engineers (IEEE) for 

electric motors restrict the use of low efficiency electrical motors [17]. 

 

In order to have high efficiency electrical motor, which does not suffer from those 

problems related to PMSMs, as mentioned above, line start permanent magnet 
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synchronous motors (LS-PMSMs) have been developed. This type of motor have a 

stator similar to induction machines but its rotor involves an electricity conducting 

squirrel-cage and pairs of permanent magnet poles. Such structure makes LS-

PMSMs as the best alternative to overcome problems pertaining to both induction 

machines and PMSMs. It is worth mentioning that, LS-PMSMs provide efficiency 

close to NEMA super premium efficiency (IE4) standard and it is a candidate to 

reach IE4 standard [2]. 

 

Although the electrical machines are robust, failures may happen in some parts of the 

machines. Electrical machines are often operated in an antagonistic environment, 

where is corrosive and dusty, and exposed to undesirable situations or miss 

operations. These conditions make several progressive failures in motor and most of 

the time put the motor in an unserviceable condition. One of the failures in the 

electrical machine is those faults generated in different parts of rotor, rotor bars, end 

rings, rotor bow, and laminations problem. The effects of faulted rotor in electrical 

machine can be observed as torque fluctuations, unbalanced motor currents, loss 

increasing, degradation of transient performance and larger thermal pressures [18]. 

The rotor faults seriously deteriorate the performance of the electrical machines and 

their efficiency. Figure 2.1 shows a real broken rotor bar in electrical machines. 

Several case studies were carried out for in situ detection of broken rotor bar in 

electrical machine in industry [10,19-21]. 

 

The percentage of motor failures attributed to rotor problems is not large, but among 

various defects may occur in electrical machines, rotor failures are of significant 

importance as they bring about secondary failures and eventually lead to a serious 

malfunction of motor [13]. Diagnosis of rotor failures has long been an important but 

complicated task in the area of faults detection in electrical motors. 

 

 
Figure 2.1: Two broken rotor bars at the end rings [21]. 
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2.2  Line-start permanent magnet motor 

 

The idea of combining the high efficiency permanent magnet synchronous motor 

with simplicity and starting ability of induction machines results in advent of new 

generation known as a LS-PMSM. The design of LS-PMSM has been introduced in 

1955 [22]. In 1984, Miller presented a study describing the starting process of line-

start permanent magnet AC motors [23]. It was stated that “the line start PM motor is 

a very high efficiency synchronous motor designed to operate at  a  fixed voltage and 

frequency from the same power supply as induction machines”[23]. Despites of 

excellent advantages of LS-PMSM, its application could not be found in the 

industries because of its high price. Advances in technology of permanent magnet 

materials that offer synthesis of high-energy permanent magnet materials with 

affordable prices has recently paved the path for commercialization of the high 

efficiency LS-PMSMs. As a result, the biggest electrical machine manufacturer 

(WEG Company) launched in 2015, and the number of LS-PMSM motors employed 

in different fields is about to increase. 

 

2.2.1  Structure 

 

As mentioned, Stator of LS-PMSM is similar to induction machines, while its rotor is 

different. Its hybrid rotor involves electricity conducting squirrel cage and pairs of 

permanent magnet poles. The structure and configuration of the LS-PMSM is 

depicted in Figure 2.2. 

 

Squirrel Cage Bar

Stator Lamination

Winding

Rotor Lamination

Permanent Magnet

Shaft

Flux Barrier

 
Figure 2.2: The structure and configuration of the LS-PMSM (Four Pole) 
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2.2.1.1  Stator Parts 

 

The stator is made up of three parts: windings, lamination core and frame. Windings 

consist of three coils, which are connected to the three-phase power supply and 

equally distributed along the stator lamination core. Frame mechanically supports 

both stator and shaft bearings of rotor. Bearings, located on both sides of the end 

shield, allow the rotor to spin freely inside the stator. 

 

2.2.1.2  Rotor Parts 

 

The rotor is made up of four parts: lamination core, squirrel cage bars, permanent 

magnet and shaft. The lamination core that mechanically supports other parts of 

motor consists of laminated sheets made of iron alloy. Another function of 

lamination core is to concentrate the magnetic flux. The rotor bars, that are short-

circuited on both sides by the end rings, circulate electric current from one side to 

other side of the rotor cage. The outer diameter of the end-rings is equal to the rotor 

core and both end-rings and rotor bars are made of the same material. The bars, 

enveloped by a lamination core, bring the rotor speed up to the synchronous speed at 

startup. Besides, bars moderate any speed fluctuations that may occur as a result of 

sudden load changes. During steady-state operation, if the load changes abruptly, an 

oscillatory movement is placed over the normal synchronous rotation of the shaft and 

the rotor bars minimize these oscillations. The squirrel cage bars can also protect the 

magnets from demagnetization during the transients associated with the start-up. 

Permanent magnets are used for the generation of synchronous torque at steady state. 

 

2.2.2  Operation 

 

In synchronous machines, torque is produced if the rotor turns at its synchronous 

speed (speed of the stator field), where the rotating field of stator is synchronized 

with the field of rotor. At start-up, field of stator first attracts and then repels the 

rotor field. Therefore, sufficient torque to start the machine cannot be produced. To 

overcome this obstacle, rotor bars are placed near the surface of the pole faces of 

a synchronous motor to bring a motor near to the synchronous speed. 

 

Function of LS-PMSM at start-up is similar to induction machine that is accelerated 

by a cage torque. However, the running up of the LS-PMSM is quasi-static because 

of its hybrid structure and hence its speed–torque characteristic is composed of both 

squirrel-cage IM and the PMSM parts. The transient state of an LS-PMSM is rather 

complex, compared to induction machine, because different torques, as illustrated in 

Figure 2.3, affects its behavior. In general, the process of rotor pulling of the LS-

PMSM into synchronism is complex and depends on the balance of four components, 

which form the total torque acting on the motor shaft: (a) synchronous torque𝑇Sync, 

(b) cage torque𝑇𝐶𝑎𝑔𝑒, (c) dynamic braking torque 𝑇𝐵𝑟𝑒𝑎𝑘(𝑠) and (d) load torque 

𝑇𝐿𝑜𝑎𝑑 [24]. 



© C
OPYRIG

HT U
PM

 

 

10 

 
Figure 2.3: Torque components of an LS-PMSM [24] 

 

In the startup, when three phase supply is applied to the stator winding, a rotating 

magnetic field is created. As the rotating field moves past the bar, a current is 

induced in rotor bars. The interaction between this current and the rotating air-gap 

field produces sufficient torque to start the motor. This torque accelerates the motor 

that overcomes the lag in its speed. Two different types of torque come into the 

process of starting, cage torque and dynamic braking torque [25].  

 

The dynamic braking torque is resulted from the permanent magnet flux in the rotor. 

During running up, the permanent magnet rotor field induces a symmetric voltage 

system of frequency 𝑓m = 𝑝. 𝑛 into the stator winding. This voltage system is not at 

line frequency; hence the power supply and its impedance represent a short circuit. 

The resulting phase currents lead to active power expenditure in the stator winding 

and the power grid impedance. It  has to be mechanically covered by the dynamic 

breaking torque [26]. The magnets in the rotor create not only braking torque but also 

oscillatory torque at all non-synchronous speed. 

 

The cage torque is directly linked and produced by the squirrel cage and accounts for 

the successful starting the LS-PMSM to near synchronous speed. The cage torque 

must overcome not only the applied load torque but also the generated dynamic 

braking torques, which is due to the presence of the permanent magnet during run-

up. However the cage must be designed to provide optimum startup torque and a 

breakdown slip point close enough to synchronize. 

 

When the motor approaches synchronous speed, the level of accelerating torque is 

lowered and the magnet torque reverses its role and becomes the sole source of 

accelerating torque. In this situation, no eddy current excluding harmonics field 

currents flows into the bars. This synchronizing torque from the permanent magnet 
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must be big enough so as to pull the machine into synchronism. The mechanical 

equation of LS-PMSM that is called “equation of motion” is given by [24]: 

 

−
𝐽𝜔𝑠

2

𝑝
. 𝑠

𝑑𝑠

𝑑𝛿
= 𝑇Sync(𝛿) + 𝑇𝑎(𝑠) − 𝑇𝐿𝑜𝑎𝑑(𝑠)                               2.1 

𝑇𝑎(𝑠) = 𝑇𝐵𝑟𝑒𝑎𝑘(𝑠) + 𝑇𝐶𝑎𝑔𝑒(𝑠)                                      2.2 

 

where 𝐽 is the total moment of inertia of the considered system, 𝜔𝑠 is the Electrical 

synchronous speed, 𝑠 is the slip, 𝛿 is a Load angle (rad), and 𝑝 is a Pole pairs and 𝑇𝑎 

is the average torque.The equation for cage torque is [24]: 

 

𝑇𝐶𝑎𝑔𝑒(𝑠) =
𝑚𝑝

2𝜋𝑓
.

𝑠𝑅2
′ 𝑉𝑝ℎ

2

(𝑠𝑅1 + 𝑐1𝑅2
′ )2 + 𝑠2(𝑋1 + 𝑐1𝑋2

′ )2
                        2.3 

 

where  𝑚 is Stator phases, 𝑉𝑝ℎ is rms phase voltage, 𝑐1 is  𝑇𝐶𝑎𝑔𝑒 correction factor, 𝑅1 

is Stator resistance, 𝑅2
′  is Rotor resistance referred, 𝑋1 is Stator leakage reactance and 

𝑋2
′  is Rotor leakage reactance referred. Based on the Equation (2.3), the starting 

torque of the machine is directly related to the cage resistance (R2
′ ). 

 

2.3  Motor Faults  

 

As electrical machines are usually operated in undesirable situations, like corrosive 

and dusty environments, and exposed to miss operations, various failures, depending 

on the structure of machine, may be generated in different parts of them. The failures 

are generally progressive and result in unserviceable condition for electrical 

machines [13,27-28]. Despite of diversity in failures happened in electrical machine, 

the statistical studies of EPRI and IEEE classified these faults into four main 

categories as rotor faults, stator faults, bearing faults and other faults [29]. As this 

research concentrates on broken rotor bar, which is a kind of rotor fault, the 

following paragraphs will only focus on describing of rotor failure in electrical 

machines. Rotor faults in electrical machines can be mechanical and/or electrical. 

The most frequently encountered rotor faults for electrical machines are briefly 

classified in Figure 2.4. These defects come from various stresses, which are 

summarized in Table 2.1 [30]. 
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Rotor Faults

Mechanical Faults

---------------------

Eccentricity

Misalignment

Rotor Bow

Rotor Fatigue

Laminations slack

Electrical Faults

---------------------

Bars crack or Broken,

End ring crack

Bars slack, 

Bad connection

 between the end rings and bars,

Short circuit of rotor laminations,

Demagnetization of magnets

 
Figure 2.4: Rotor Faults in Electrical Machines 

 

Table 2.1: Rotor Assembly Stresses [30] 

Thermal  Environmental 

    Thermal Overload  Contamination 

    Thermal Unbalance  Abrasion 

    Excessive Rotor Losses  Foreign Particles 

    Hot Spots  Restricted Ventilation 

    Sparking  Excessive Ambient 

  Temperature 

Magnetic   

    Rotor Pullover  Mechanical 

    Noise  Casting Variations 

    Vibration  Loose Laminations 

    Off Magnetic Center  Incorrect Shaft/Core  Fit 

    Saturation of Lamination  Fatigue or Part Breakage 

    Circulating Currents  Poor Rotor to stator 

  Geometry 

Residual  Material Deviations 

    Stress Concentrations   

Uneven Bar Stress   

  Other 

Dynamic  Misapplication 

Vibration  Poor Design Practices 

Rotor Rub  Manufacturing Variation 

Over-speeding  Loose Bars, Core 

Cyclic Stresses  Transient Torque 

Centrifugal Force  Wrong Direction of Rotation 
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2.3.1  Rotor fault 

 

The squirrel cage rotor is the inner part of the motors and it is rotated by 

electromagnetic field, which is induced in its coils by stator field. The rotor then 

applies the rotational force to the external equipment. Squirrel cage rotor, depending 

on the construction of the cage, is divided into cast and fabricated rotor. The material 

used for cast cage is aluminum and the cast cage rotors are generally used in small 

size motors. Whereas, the material used for fabricated cage is copper and fabricated 

cage rotors are used for high-power motors. Although the squirrel cage rotor is 

rugged, rotor defects, such as broken rotor bar, cracked end-ring and bent shaft, do 

occur. The percentage of motor failures attributed to rotor problems is not too large, 

but they can cause extensive damage to the motor if left undetected [31].  

 

Broken bar faults may happen due to a variety of reasons, such as mechanical, 

thermal or magnetic stresses; environmental stresses during motor operation; defects 

in design of motor structure and its manufacturing [13,28]. Among different types of 

rotor fault, broken bar and end ring are mainly caused because of manufacturing 

defects and excessive start-stop cycles or frequent speed changes. Motors of low and 

medium power generally involve casting rotor bars. Small defects that may occur 

during casting process cause important failures in the bar and the other reasons 

mentioned in [10]. In the rotor of high power motor, copper bars are generally 

connected to the end rings through welding and if this procedures are not performed 

carefully; some defects are generated [32]. Rotor design plays a key role in the 

severity of rotor irregularity. If the rotor has a closed bar design, the fault severity is 

expected to be low because of iron acting of rotor that holds asymmetrical bar in 

place. Nevertheless, if the rotor has an open bar design, the asymmetrical severity 

enhances, significantly [31]. 

 

The electromagnetic behavior of synchronous machines with a squirrel cage (LS-

PMSM) during startup is similar to induction machines. During transient times, when 

the synchronous machines accelerate from zero speed to synchronous speed, current 

flows in the rotor bars drastically [33]. Excessive start/stop cycles and/or speed 

changes cause breakage in damper bars. When a bar breaks, almost no current can 

flow in this bar and thus will flow in the two adjacent bars. This phenomena, itself, 

also leads to generating breakage in other bars [34]. 

 

2.3.2  Secondary failures caused by broken rotor bar 

 

Rotor bar failures bring about secondary failures in other parts of electrical machine. 

These secondary failures cause severe malfunctions of the motor and reduce the 

motor efficiency that increases the operational costs. For example, current in bars 

adjacent to the broken one increases up to 50% of rated current [6] and thus causes 

unbalanced currents and torque pulsation, which decrease the average torque [4]. 

When distribution of rotor current is changed, adjacent bars to broken one are 

overheated that cause other irregularities [5] and breakage of several other bars [34]. 

Variation of heating around the bars can also make a bow in rotor and then generates 
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eccentricity. Rotor eccentricity causes basic rotor unbalance and a greater unbalanced 

magnetic pull [7]. Moreover, if a broken rotor bar rises out of the slot due to the 

centrifugal force, the bar will contact the stator winding and damage it. The small 

pieces come from a broken rotor bar also damage the stator windings and laminations 

during operation [10]. In addition to the secondary failures from broken rotor bar, 

mentioned above, this failure leads to a shaft vibration and thus air gap eccentricity 

[8]. Besides vibration, broken rotor bar also causes sparking and noise during the 

motor start-up and its normal operation [10,11], which threatens the operation safety. 

It is evident that during start-up, more excessive vibration, more destructive sparking 

and louder noise are generated. 

 

According to the explanation above, the effects of broken bar significantly lessen the 

efficiency and performance of electrical machines and early detection of this failure 

is essential [35]. Detection of broken rotor bar in its early ages not only secures the 

motor performance but also reduces risk of other types of failures. When the failure 

is at its early stage, symptoms of the faults are small and the motor apparently 

operates normally, therefore, the fault cannot be detected [35]. A relatively large 

number of studies have been performed on early detection of rotor faults, especially 

broken rotor bar, in squirrel cage induction machines [13]. However, no study has 

been reported for broken rotor bars detection in LS-PMSM yet as this type of motor 

has only been applied recently in different fields. However, due to similarity between 

LS-PMSM and induction machine, some principles used for broken rotor detection 

can be taken into account, nevertheless, differences in their structure necessitates a 

detailed observation. 

 

2.4  Condition Monitoring Techniques 

 

The key for successful fault detection in electrical machines relies on availability of 

accurate information from them that allows understanding of machine condition. 

Thus, the basis of any fault detection system is a precise condition monitoring. It can 

easily be realized from the words that condition monitoring is an act to observe the 

performance of a device, including electric machines, with the purpose of 

maintenance strategy. The reliability of condition monitoring techniques depends 

upon the best understanding of motor characteristics, including electrical and 

mechanical characteristics, in both healthy and faulty conditions. In this respect, 

condition monitoring techniques have continuously been developed over the years 

resulting in a range of available methods for failure diagnosis in electrical devices. 

Condition monitoring techniques presented for broken rotor bar detection in 

induction machines, which is the interest of this research, can be classified into the 

following categories [13]: 

 

 Acoustic Emission, 

 Air Gap Torque, 

 Stator Current, 

 Electromagnetic Field Monitoring, 

• Search coils,   

• Stray Flux, 

 Instantaneous Angular Speed, 
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 Instantaneous Power, 

 Motor Circuit Analysis, 

 Vibration, 

 Voltage. 
 

The output of any condition monitoring technique is a signal indicating fluctuation of 

a specific parameter, like current, voltage, vibration, torque, etc. of the device. 

Different signals have been used for fault diagnosing of induction machine [35]. 

According to the nature of the signals, being invasive and non-invasive, condition 

monitoring techniques are classified into two main categories [36]. Invasive 

techniques require disassembly of the machine to introduce specific transducers or to 

conduct a visual inspection. These techniques utilize  special  sensors and devices 

installed on the  body  of  desired motor for  measuring  some  consequences  as  

fault  indices. Condition monitoring of an electrical machine based on signals (like 

acoustic waves, magnetic flux density, speed, temperature, torque and vibration) 

requires an appropriate sensor (or sensors) installed on the motor. Non-invasive 

techniques use consequences of the motor terminal current or voltage as indices and 

thus no need to install any equipment on the body of motor. These techniques allow 

the health of the motor to be monitored whilst the machine is still in normal 

operation. Condition monitoring of an electrical machine based on signals like 

current, instantaneous torque, magnetic flux density (stray flux sensor) and voltage 

does not require the sensor to be installed inside the machine. Other excellent 

characteristics of non-invasive techniques that make them trustworthy are as follows 

[37,38]: 

 

 possibility to be installed outside the machine body, 

 no need of any precaution for the installation, 

 no interruption in normal operation of motor for measurement because no 

sensor or special equipment is required, 

 using only instrument with reasonable price, 

 simplicity of remote measurement of motor parameter from supply and control 

section, 

 no interfere from other measuring devices that present in the practical 

environment with the measuring system of motor under consideration, and 

 feasibility of developing an on-line fault detection system. 

 

Invasive techniques were broadly used for fault diagnosis purposes in the past. 

However, nowadays these techniques are out of date and not popular. Among various 

un-invasive techniques for fault diagnosis of electrical machines (namely power, 

current and voltage signals), measurement of current provides particular advantages. 

For instance, in the case of applying unbalanced voltages to the motor, diagnosis of 

other faults and their discrimination from the voltage unbalanced features is difficult. 

Several other criteria, like sensitivity of the motor current to any failure in the motor 

and accessibility of appropriate sensors with reasonable price that offer high quality 

measurement, also suggests measuring stator current signal is the prior for fault 

diagnosing [35,37].  
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Condition monitoring techniques of electrical machines can be performed on-line or 

off-line [39]. On-line monitoring techniques offer inspecting and monitoring of the 

machine condition while it is under normal operating. On-line monitoring could have 

attracted a great attention for fault detection in electrical machines because of its 

advantages addressed as follows [13,39]: 

 

 possibility of acquiring data without disruption of its application, 

 ability of direct detection of different faults in electric machines, 

 fast response to the fault development, 

 proper warning of the crucial failure, 

 specifying necessary maintenance, 

 planning for  optimum maintenance schedules, 

 minimum downtime, and 

 allowing the users to have necessary spare parts before machine is stripped 

down. 

 

The important weakness of off-line methods compared to the on-line methods is 

interruption of the motor operation or its shutdown for measurement. However, there 

are some circumstances that off-line monitoring offer some advantageous, like 

reduction in noise contamination, and load and speed repeatability [40]. 

 

2.4.1  Acoustic Noise Monitoring 

 

Acoustic emission is the generation of transient elastic wave due to a rapid release of 

strain energy caused by structural alteration in a solid under stresses [41]. Analysis of 

acoustic spectrum measured during operation of electrical machine is one of the 

conventional methods for condition monitoring of electrical machines. Acoustic 

noise monitoring has widely been applied for detection of bearing faults. However, 

in [42], Li and Mechefske used this method for detection of rotor faults. They, in a 

comparative study, demonstrated that the acoustic signatures contain information 

related to the broken rotor bar in induction machines. Authors finally proposed that 

the acoustic analysis can be used as a supplementary method for broken rotor bar 

detection in induction machines. 

 

In 2014, Germen and their co-researchers [43] proposed a special method for 

detection of both mechanical and electrical failures by microphones. They noted that 

the failures can be classified based on analysis of the acoustic data recorded by using 

several microphones simultaneously. The true nature of sound propagation around 

the running motor provides specific clues about the types of the fault [43]. However, 

acoustic emission has some disadvantages that influence the reliability of this 

technique [42,44-46]. First, the acoustic spectrum depends on the motor design and 

its geometry and thus the noise from one induction machine is different from another 

motor with different size or geometry. It requires a noise-free environment and a 

noisy background reduces the accuracy of fault detection using acoustic 

measurement. The important obstacle is the spectrum obtained by the sensor depends 

on the position of sensor. 
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2.4.2  Air Gap Torque Monitoring 

 

In electrical machines, Torque is produced by the tendency of the two component 

“rotor and stator magnetic fields” to line up their magnetic axes [47]. Currents in the 

motor windings generate magnetic flux in the air gap between the rotor and stator, 

and hence the flux linkage produces air gap torque. Almost all failures in electrical 

machine create harmonics with the special frequencies in the air gap torque. The 

shape of the air-gap torque indicated whether the unbalance is caused by the cracked 

rotor bars or by unbalanced stator windings [48]. Due to inherent asymmetry in the 

machine structure caused by broken rotor bar, the low frequency backward field is 

strengthen and thus the air gap flux density is distorted [49]. Hsu et al. show that if 

any rotor defect exists, the torque has one constant component and one fluctuating 

component. This fluctuating component, which is related to the rotor defect, 

generates a double-slip frequency in the airgap torque spectrum, as [48]: 

 

𝑓𝑓𝑏𝑟𝑏 = 2𝑘𝑠𝑓                                                          2.4 

 

Where 𝑘 = 1,2,3, .. is the integer; 𝑠: the slip and 𝑓: the stator supply frequency or 

fundamental frequency. 

 

Airgap torque can be determined using two different methods. One is using torque 

sensor that measures the real value of the air gap torques from machine shaft. The 

second method is using voltage and current sensors. In this method, current and 

voltage signals are used to calculate the torque based on mathematical model. Both 

methods can successfully be applied to find the fault signatures. In the first method, 

the harmonic index of the electromagnetic torque spectrum for a healthy electrical 

machine is described by [50]: 

 

𝑓𝑇± = [±𝑣 ± 𝑙𝑁𝑅 (
1−𝑠

𝑝
) ± 2𝑘′ ± 𝜇]𝑓                                   2.5 

 

Where, 𝑣: the stator harmonic rank number; 𝜇: the rotor harmonic rank number; 𝑙 =
1,2,3, … : the rotor slot related harmonic rank number;  𝑘′ = 1 𝑜𝑟 0: when exists or 

not effect of saturation, respectively; 𝑁𝑅: the number of rotor slot; 𝑝: the Number of 

pole pairs; 𝑠: the slip; 𝑓: the fundamental frequency. 

 

If broken rotor bar presents, position of the fault's signatures is in the area between 

𝑓𝑇− and 𝑓𝑇+ . This harmonic, which is related to the fault, are mutually amplified and 

can be found through [50]: 

 

𝑓𝑇𝑏𝑟𝑏 = 𝑓𝑇± ± 𝑓𝑓𝑏𝑟𝑏                                               2.6 

 

This method has an important drawback that the diagnosis is sensitive to speed 

oscillations, because the model used to compute the torque does not consider speed 

or resistant torque. Another imperative obstacle for this technique is measurement of 

airgap torque cannot be performed directly and accurately. Practically, the measured 

pulsating torques of an electrical machine obtained by using torque sensors coupled 

to the machine shaft are different from the real value of the air gap torques. The 
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reason is the rotor; shaft and frame in the motors as well as the mechanical load 

constitute an individual torsional spring system that has their own natural frequency. 

Most mechanical torque sensors have also their specific natural frequencies and 

bandwidths [48]. 

 

The second method was first proposed for the rotor fault detection based on torque 

monitoring by [51]. They calculated torque from the line currents and the emf across 

flux sensors placed in the stator windings. In this method, the flux sensors are not 

essential to determine the electromagnetic torque [52]. In [48] proposed measuring 

voltages and currents for reconstruction of the airgap torque. They define calculation 

of airgap torque using measurable motor terminal quantities as: 

 

𝑇 =
𝑝

√3
{(𝑖𝐴−𝑖𝐵). ∫[𝑣𝐶𝐴 − 𝑅(𝑖𝐶 − 𝑖𝐴)]𝑑𝑡 − (𝑖𝐶 − 𝑖𝐴). ∫[𝑣𝐴𝐵 − 𝑅(𝑖𝐴 − 𝑖𝐵)]𝑑𝑡}      2.7 

 

where 𝑖𝐴 , 𝑖𝐵, and 𝑖𝐶 are three-phase line currents of an induction machine, 𝑣𝐶𝐴 and 

𝑣𝐴𝐵 are line-to-line voltages, 𝑅 is half of the line-to-line resistance, and  𝑝 is the 

number of pole pairs.  

 

To derive Equation (2.7), the magnetic paths of three phases were assumed identical. 

It is known that only interaction between stator currents and fluxes produced by rotor 

currents yields torque. Although the interactions between stator currents and fluxes 

produced by the stator currents do not produce torque, these currents can affect the 

saturation of magnetic paths. Once the leakage reactance and magnetic paths of the 

three phases become asymmetrical, errors are induced and calculation of air gap 

torque using Equation (2.7) is not precise [53]. In [52] proposed reconstruction of the 

airgap torque using voltages and currents measurement based on d-q model. They 

used the results of their model for detection of end-ring fault at steady state condition 

under no-load. The harmonic index of the electromagnetic torque spectrum for 

asymmetric rotor can be described by [52]: 

 

fTbrb1
= f . (

NR

p
(1 − s) ± n′)                                       2.8 

fTbrb2
= f . (

NR

p
(1 − s) ± n′) ± 4sf                                 2.9 

 

where 𝑁𝑅 is the number of rotor slots; 𝑝 is the number of pole pairs; 𝑠 is the slip; 𝑓 is 

the fundamental frequency and 𝑛′ is a sum or difference of any two integers n'=-2,-

1,0, 1, 2,... 

 

In 1998, Wieser and co-researchers developed a special method, called Vienna 

monitoring [54]. This method uses the output of the current model and voltage model 

to estimate the electromagnetic torque of an inverter-fed induction machines for on-

line monitoring of rotor cage [54-56]. Vienna monitoring method compares the 

outputs of a reference model (an ideal motor) with a measurement model. For a 

symmetrical motor, the torque values obtained from these two models should be 

equal. Any rotor failure, however, leads to different values for torque. Consequently, 

evaluating the ripple component in the torque difference at the double slip frequency 
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provides broken bar detection. The difference between the estimated torques 

obtained from those two models gives an indication of the existence of broken bars.  

 

However, this method is not reliable for light load conditions. Analogous to the 

method of model reference estimation, Vienna monitoring cannot provide accurate 

estimation for motor parameters. The reason is to achieve accurate models, it 

requires various machine parameters, like including stator resistance, rotor reactance 

and rotor time constant [57]. Vienna monitoring method is not much attractive, 

because it needs two different sensors (current and voltage), and hence it demands 

excess costs. 

 

In [58], Thomas et al. proved that the electromagnetic torque calculated for 

symmetrical healthy motor using measured motor variable scan be used for diagnosis 

of asymmetric conditions. These results were taken through modeling and simulation 

of an electrical machine and were justified with practical observation. They 

compared the result of estimated the air-gap torque by using the detailed machine 

model and the d-q model [58]. 

 

In [59], Da Silva et al. presented a method for condition monitoring of induction 

machine using data analysis of air gap torque profile in conjunction with a Bayesian 

classifier. Their method was trained off-line with data sets and provided effective 

monitoring of induction machines. Since torque oscillations extremely depends on 

the rms value of the supply voltage, it is crucial to find a reliable index, which is less 

sensitive to the factors other than broken bars fault [60]. 

 

2.4.3  Stator Current Monitoring 

 

The current drawn by a healthy electrical machine has a single component at the 

supply. Any mechanical or magnetic asymmetric generates frequency components in 

the stator current spectrum of the motor. The value of these induced frequency 

components correspond to the specific fault presented in the motor. Accordingly, 

sensing the stator current and extraction of the induced frequencies in the current 

spectrum can reveal the presence of any failure in electrical machines. It is worth 

mentioning that the stator current may be monitored during the normal operation of 

electrical machine or during its start-up. The important role of the frequency 

components induced in stator current spectrum for fault detection in electrical 

machine is well documented in [13,28,61]. Motor current signature analysis 

(MCSA), as a condition monitoring technique, utilizes the results of current spectrum 

analysis to pinpoint an existing or incipient failure in the electrical machines [62]. 

Since the objective of this research is early detection of broken rotor bar in LS-

PMSMs based on MCSA, following sections will focus on the effects of this failure 

on the spectrum of stator current. 
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2.4.3.1  Effect of Broken Rotor Bar Fault on Rotor Magneto-Motive Force 

 

In this section, the effect of broken rotor bar on the rotor magneto-motive force 

(MMF) and consequently its impact on the stator current waveform will be 

discussed. The MMF of the rotor can be resolved into the forward component 

corresponding to the healthy case, which is rotating at synchronous speed, 𝜔𝑠𝑦𝑛, with 

respect to the stator (or 𝑠𝜔𝑠𝑦𝑛 with respect to the rotor). However, when a rotor bar 

cracks, no current can flow through the bar and hence no magnetic flux is generated 

around that bar (Figure 2.5). In case, there is no magnetic flux around a bar, a non-

zero backward rotating field and thus an asymmetry in the rotor MMF is produced. It 

has to be noted that for a symmetrical rotor with no broken bar the resultant of 

backward rotating field is zero. The non-zero backward rotating component, which is 

generated due to the virtual presence of a bar carrying an equal opposite current to 

the original bar, subject to breakage in the healthy rotor. 

 

No magnetic flux around the broken rotor bar

Magnetic flux DirectionCurrent Direction

Broken Rotor Bar

 
Figure 2.5: Illustration of rotor bar current and magnetic flux in the existence 

of a broken rotor bar [63] 

 

This non-zero backward MMF due to broken bar rotates at slip frequency 

corresponding to the slip speed, 𝑠𝜔𝑠𝑦𝑛, with respect to the rotor and induces 

harmonic currents in the stator windings, which are superimposed on the stator 

winding currents. Accordingly, the speed of the non-zero backward MMF with 

respect to the stator can be calculated as follow: 

 

𝜔𝑏𝑀𝑀𝐹 = −𝑠𝜔𝑠𝑦𝑛 + 𝜔𝑚 = −𝑠𝜔𝑠𝑦𝑛 + (1 − 𝑠)𝜔𝑠𝑦𝑛 = (1 − 2𝑠)𝜔𝑠𝑦𝑛                 2.10 

 

These superimposed features are used as signatures for detection of broken rotor bar 

in MCSA techniques [64]. Figure 2.6 shows the effect of broken rotor bar faults in 

MMF of rotor for cage with 16 bars per pair of poles. 
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Figure 2.6: Effect of broken rotor bar in MMF of rotor [65] 

 

2.4.3.2  Effect of Broken Rotor Bar in Frequency Domain 

 

The non-zero backward MMF induces an electro motive forces (EMFs) in the stator 

windings at a frequency equals to (1 − 2𝑘𝑠)𝑓 where 𝑓 is the fundamental frequency, 

𝑠 is slip and 𝑘 = 1,2,3, …. The fundamental frequency is defined as = (𝑝/4)w𝑠𝑦𝑛 , 

where 𝑝 is the number of poles and w𝑠𝑦𝑛is synchronous speed. This sideband 

component appears in the frequency spectrum of the stator around the fundamental 

frequency in the presence of the cracked or broken rotor bar. It has been indicated 

that the amplitude of this sideband frequency component is proportional to the 

number of broken rotor bar that presents in electrical machine [66]. Another 

parameter that can affect the magnitude of these sidebands is motor-load inertia [28]. 

Besides, some factors like the mode of supply, the level of load and the motor speed 

affect the fault detection directly [60]. 

 

In fact, the current component with (1 − 2𝑠)𝑓 frequency produces a torque pulsation 

with a frequency equals to 2𝑠𝑓. Consequently, a speed ripple with the same 

frequency is generated if the inertia of the rotating mass is not too large. This speed 

variation then generates another component in the stator current at a frequency equal 

to (1 + 2𝑠)𝑓, which is the right sideband component at a frequency (1 + 2𝑠)𝑓. 

Broken rotor bar indirectly produces the right sideband component at a frequency 

(1 + 2𝑠)𝑓 in the stator current and a speed ripple (or torque pulsation) is created by 

the right sideband component at twice of slip frequency, 2𝑠𝑓. The amplitude of the 

right sideband component at (1 + 2𝑠)𝑓 is diminished by an increase in the inertia of 

the motor-load system. The second component at a frequency (1 + 2𝑠)𝑓 in the stator 

currents induces a current at triple the slip frequency, 3𝑠𝑓, in the rotor.The later, 

owing to rotor asymmetry, causes a stator component at frequency (1 + 4𝑠)𝑓 as 

well. If further torque pulsation and speed ripple harmonics are considered, the 

frequency chain, ((1 − 𝑠) ± 𝑘𝑠)𝑓, with 𝑘 being equal to odd numbers, appears in the 

current spectra [67]. Generally, the value of broken rotor bar frequency is taken in to 

account as 𝑓𝑏𝑟𝑏 = (1 ± 2𝑘𝑠)𝑓. The left sideband component, 𝑓𝑏𝑟𝑏− = 𝑓𝐿𝑆𝐻 = (1 −
2𝑘𝑠)𝑓, is specifically due to the broken bar while the right sideband component (1 +
2𝑘𝑠)𝑓𝑠 is due to the consequent speed oscillation and saturation phenomena [49,67]. 

Accordingly, the right sideband component, 𝑓𝑏𝑟𝑏+ = (1 + 2𝑠)𝑓, may be used in 
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monitoring of broken rotor bar and its severity [68]. However, if an external device 

sets the motor speed, the right-sideband components disappear [49]. In this respects, 

other spectral components values in the stator line current relevant to the broken 

rotor bar frequencies were proposed. For example, in [34,69-70] presented broken 

rotor bar frequencies as: 

 

𝑓𝑏𝑟𝑏 = (
𝑘

𝑝
(1 − 𝑠) ± 𝑠)𝑓                                            2.11 

where 𝑘 𝑝⁄ = 1,2,3, ….  

 

Thomson et al. have shown that the slot harmonic frequencies for a rotor with 

asymmetry (broken bar, end-ring fault or eccentricity) become: 

 

𝑓𝑠ℎ = 𝑓 . (
𝑁𝑅

𝑝
(1 − 𝑠) ± 𝑘) ± 2𝑠𝑓                                     2.12 

 

where 𝑁𝑅 is the number ofrotorslots; 𝑝 is the pole pairs; 𝑠 is the slip;𝑓 is the 

fundamental frequency and 𝑘 = 1,2,3, ….They claim  that  the slot harmonic 

components frequencies of  the  stator  currents  caused  by  the  rotor  slotting 

harmonic  can  be  used  for a rotor fault diagnostic [71]. 

 

 

2.4.3.3  Influence of Broken Rotor Bar locations in detection 

 

Rastko and Ferkolj (1998) are the first researchers who used finite element method to 

study the effects of broken rotor bar asymmetry on the magnetic field of motor [72]. 

Using finite element method, the induced currents in rotor cage can be determined. 

Besides that, the steady-state and transient characteristics of electrical machine in the 

case of any rotor bars asymmetry can be calculated considering the numbers of 

broken bars and their position. They show the magnetic field is symmetrically 

distributed with regard to pole-pair division in the case of symmetrical stator and 

rotor winding. Broken rotor bar produces asymmetrical magnetic field due to the lack 

of induced currents in faulty rotor bars and leads to a local saturation in the stator and 

rotor teeth near the broken bars. As a consequence,  unproportional distribution of 

magnetic field is generated in the air-gap that leads to several electromagnetic 

phenomena like increase of higher harmonic components, development of inverse 

magnetic field, torque pulsation, unbalanced magnetic pull etc. [73]. Rastko and 

Ferkolj (1998) indicated both the number of broken bars and their position in the 

rotor cage play role in the resulting undesired phenomena in the machine. For 

instance, the same number of broken bars situated under different poles brings about 

less asymmetry in other parts of machine compare to the faulty bars that concentrated 

close together. Based on their results, the worst case of asymmetry is generated if the 

faulty bars are concentrated close together one by one under the same magnetic 

pole.These researchers also provide another research based on the location of the 

broken rotor bars in different pole pitch [5]. They also prove that the same 

percentage of broken bars does not mean the same degradation of operation 

performance of the induction motor.  
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In [74], was Modeled very precisely and with minimum simplifying assumptions of 

broken bars fault in different location or distributed over poles of the motor using 

Time stepping finite element method. They are shown that the location of the broken 

rotor bars is the third factor which affects the diagnosis of its. In their research, they 

consider stator current and torque frequency spectrum as two different condition 

monitoring and shown that the broken rotor bar location influences the amplitudes of 

harmonic components. Similar to Rastko and Ferkolj (1998), they proved the 

location of broken bars significantly influence the motor performance.  They also 

indicated that allocation of broken rotor bars over different poles of motor decreases 

the amplitude of harmonic components and concentration of the broken bars on one 

pole of the motor increases the motor oscillation. 

 

In 2010, Riera-Guasp and coresearchers carried out a comprehensive  study 

including both theoretical analysis, simulation and experimental activities to 

investigate the effects of location and numbers of broken bars on the fault diagnosis 

using MCSA [75]. They presented a physical interpretation of the left sideband 

appearance under different broken rotor bar conditions. It was indicated that the 

amplitude of sideband decreases as the second broken bar moves away from the first 

and it gets to a minimum when approximately half the pole pitch separates both bars. 

The amplitude then increases until to reach a maximum when a pole pitch separates 

the bars. At this case, the sideband amplitude practically doubles the amplitude 

corresponding  the a single breakage.  

 

In a similar study, Ying (2010) investigated the influences of broken rotor bars 

located at different relative positions in an induction motor using both experimental 

and mathematical modeling of motor by finite-element method for both thermal and 

electromagnetic condition [76]. They studied the effects of equal numbers of broken 

with different positions on the motor’s performance and found the stator current and 

starting torque are greatly  influenced from the position of broken rotor bars.   

 

Later on, Faiz and coresearcher (2012), used both modeling with winding function 

method and experimental activity to investigate the effects of four broken rotor bars 

with different positions on the competency of the amplitude of the sideband 

components at frequencies (1± 2ks)fs with influence of control techniques via the 

open- loop constant voltage/frequency and closed-loop direct torque control 

techniques [49]. It was shown that at constant load and reference speed, the 

amplitude of the fault index is reduced by distributing the broken bars over different 

poles. This change may cause errors in the accurate diagnosis of the fault degree; 

however they mentioned that the locations of the broken bars are diagnosable with 

reasonable accuracy. 

 

2.4.3.4  Left Sideband Component Values and Number of Broken Rotor Bar 

 

Some general empirical conclusion based on the values of the left sideband 

component in the motor current spectrum proposed threshold values of the left 

sideband component for motor fault classification under a nominal load. For 
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instance, in [77], Faiz et al. proposed the magnitude greater than -54 dB correspond 

to a faulty motor. In [78,79], Hirvonen and Benbouzid et al. proposed smaller 

threshold values of the left sideband component for a faulty motor as they said the 

magnitude of the left sideband component greater than -50 dB is an indication of 

broken rotor bars. In [80,81], Thomson and Fenger and Siau et al. even believe a 

smaller threshold and they said the magnitude of the left sideband component greater 

than -45 dB could be corresponded to the faulty motor.  

 

In [66] indicated that the current flowing in a completely broken bar versus the 

length of the rotor (𝑙𝑥) can be estimated by: 

 
𝐼(1−2𝑠)𝑓

𝐼𝑓
= 1 −

1

cosh (𝑙𝑥)
                                          2.113 

where= √3 |
𝑍𝑏

𝑅𝑐
| , 𝑍𝑏 is the bar impedance and 𝑅𝑐 is the contact resistance between 

the bar and the rotor core. 

 

Besides broken rotor bar detection, some researchers moved forward and elaborated 

to find a specific criterion to determine the number of broken rotor bar or severity of 

the fault from stator current spectrum [66,78,82-84]. Table 2.2 summarizes the 

correlations proposed for estimation of the rotor fault severity.  

 

Table 2.2: The correlations proposed for estimation of rotor fault severity 

Ref. 
Current 

Component 

Estimation of number of 

broken rotor bar 
Definition 

[66] (1 − 2𝑠)𝑓 
𝐼(1−2𝑠)𝑓

𝐼
=

sin 𝛼

2𝑝(2𝜋 − 𝛼)
 𝛼 =

2𝜋𝑝𝑁𝐵𝑅𝐵

𝑁𝑅

 

[78] (1 − 2𝑠)𝑓 
𝑁𝐵𝑅𝐵

𝑁𝑅

=
2 𝐼(1−2𝑠)𝑓

𝐼 + 2𝑝. 𝐼(1−2𝑠)𝑓

  

[82] (1 ± 2𝑠)𝑓 
𝐼(1±2𝑠)𝑓

𝐼
=

𝑁𝐵𝑅𝐵

2𝑁𝑅 − 𝑁𝐵𝑅𝐵𝑝
  

[83] (1 ± 2𝑠)𝑓 
𝐼(1±2𝑠)𝑓

𝐼
=

𝑁𝐵𝑅𝐵

𝑁𝑅

  

[84] (1 − 2𝑠(𝑣))𝜔(𝑣) 
2 Γ(𝑣)

𝑝
=

𝑁𝐵𝑅𝐵

𝑁𝑅

 
Γ(ν)(s, ω) =

𝐼(1−2𝑠(𝑣))𝜔(𝑣)

𝐼(𝜔(𝑣))

 

v =5,7, 9,… 

 

2.4.4  Electromagnetic Field Monitoring 

 

The air gap flux during normal condition of the motor ideally varies sinusoidally 

both in space and time. Any failure in stator and/or rotor causes deviations of such 

sinusoidal variation [85]. If any rotor bar is broken, its current re-distributes in the 

surrounding rotor bars. In [86] studied the field distribution of induction machines by 
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finite element analysis and indicated that the broken bar causes an anomalously high 

air gap local field that rotates at rotor speed. This field pulsates at slip frequency and 

modulates coil-induced voltage at a characteristic frequency 𝑓𝑏𝑟𝑏, modified from the 

presented equation to be as follow: 

 

fbrb = (
2fs

p
)(1 − s) ± sf                                           2.14 

 

Monitoring of magnetic field can be measured through both internal search coil and 

external search coil. The former one used searches coil mounted on the internal stator 

tooth tip and the induced voltage waveform is used to detect the presence of faults. 

Different types of internal search coil have been designed and used by [87-90]. 

However, the insertion of the search coils in the stator slots represents a highly 

invasive monitoring technique. 

 

The external search coil or stray flux is installed outside of the motor and studied via 

its axial, radial and combination of this two fields [91]. Different types of external 

search coil have been designed and used by other researchers for detecting rotor 

faults [37,91-93]. In [94] investigated  the broken bar diagnosis via the external 

search coil measurement after supply disconnection. 

 

In [95] compared induced voltages in search coils located both internally and 

externally for broken rotor bar detection. They well justified that the analysis of 

induced voltage in an external search coil is adequate to detect the presence of the 

broken bars. They believe external search coil offers some priorities, as they are non-

invasive and can easily be interfaced to the equipment. An external search coil is 

fixed on the motor frame to observe electromagnetic force. Using search in the 

industries coil is useful because the there is no need of motor modification or its 

temporarily taking in out the service. Nevertheless, monitoring of electromagnetic 

field via search coil is not being widely applied in the industry due to some practical 

limitations [37,96]. The important obstacle is the impact of sensor position on the 

magnitude of the output signal. Moreover, it is not often possible to install the coil in 

the correct position to ensure a reliable signal. Dimension of stray flux sensor is 

somewhat related to the size of induction machine and importantly, analysis of the 

air gap and axial flux signals cannot be quantified as a function of the fault severity. 

 

2.4.5  Instantaneous Angular Speed Measurement 

 

In practice, electrical machines rotate with changeable speed. Instantaneous angular 

speed is variation of motor speed that occurs within a single shaft revolution. 

Accordingly, measuring and analysis of the instantaneous angular speed of the rotor 

can give information about the motor dynamics. This information then can be used 

for fault diagnosis in electrical machines. Measurement of angular speed is based on 

two basic principles, which are counting the pulse numbers in certain time duration 

and measuring of elapsed time for a single cycle of encoder signal. Laser-based 

techniques and shaft encoders are the commonly used methods of instantaneous 

angular speed measurement. 
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Since the pulsating torque due to the rotor faults alters rotor speed, measuring and 

analysis of the instantaneous angular speed can reveal the size and location of the 

damage in a rotor [69,97]. Despite of its capability in fault detection, monitoring of 

instantaneous angular speed is less popular compared to the other existing 

conventional methods. An important obstacle in analysis of instantaneous angular 

speed is the uncertainties in the speed estimation of the underlying system that makes 

it not to be precise for fault diagnosis. For example, instantaneous angular speed 

measurement is inevitably influenced by random fluctuations in load and electric 

supply. In [40], Sasi et al. presented a complete explanation of the advantages and 

drawbacks of this method. In [98] investigated the effects of noise on measurement 

of the instantaneous angular speed. 

 

2.4.6  Power Analysis 

 

Stator voltages and currents in electrical machines are measured and employed for 

computation of the input power. Waveforms of the instantaneous power are 

subsequently analyzed using signal processing method to extract interested features 

and characteristic spectral components. Different types of power monitoring have 

been presented and applied for fault detection in electrical machines. For instance, 

instantaneous power was used for detection of stator winding faults like inter turn 

short circuits in squirrel cage induction machine [99]. The instantaneous power was 

also proposed as a medium to detect the presence of a variable load and torsional 

vibrations of the motors shaft in induction machine [100,101]. The power spectrum 

was also applied for detection of fault in rotor cage as defects produce harmonic 

torques with frequencies at even multiples of the slip frequency [102]. This method 

is proposed based on the fact that, in the power spectrum, frequency components 

representing the fault are not present anymore as sidebands of the fundamental 

frequency [100]. Instantaneous power was used for broken rotor bar detection and its 

severity [103,104]. The severity was determined through defining a severity factor, 

which is the ratio of the amplitudes corresponding to 2𝑠𝑓 component and dc term for 

the total instantaneous power. In [104], Cruz and Cardoso mentioned that this 

evaluation is almost independent of parameters like motor rating, magnetizing 

current or motor-load inertia. In [105] compared partial powers and total power for 

broken rotor bar detection, and they indicated the partial power is more reliable than 

other method. Since load anomalies can also have affects on the instantaneous power 

spectrum, Drif et al. compared the effect of different load anomalies with other 

machine anomalies, such as broken bar [106]. In [107], Liu et al. used the 

instantaneous power spectrum for detection of mixed fault (broken rotor bar and 

eccentricity). The two different features of (2𝑠𝑓) and (2𝑓 ± 2𝑘𝑠𝑓) were used for 

broken rotor bar detection. They indicated theoretical and experimental ability of 2𝑠𝑓 

for broken rotor bar detection. Drif and Cardoso tried to improve and develop 

different types of the instantaneous power monitoring like, instantaneous power 

phase angle [108], instantaneous non-active power [109], instantaneous power factor 

approach [110], instantaneous active and reactive power [111], instantaneous 

reactive power [112,113] for broken rotor bar detection. Later on, they used the 

signatures obtained from analysis of instantaneous active and re-active power and 

their resulting signals (namely, instantaneous phase angle and power factor) for 
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discriminating motor failures, like broken bars and airgap eccentricity, from irregular 

mechanical load and/or any oscillation in induction machines [114]. 

 

Spectra analysis of both instantaneous active and reactive powers, Angelo et al. 

proposed a technique to discriminate the broken bars and oscillations caused from 

low-frequency load [115]. They also proposed a fault severity factor independent of 

the motor load that makes quantification of the broken rotor bar fault practical. In 

[116], Maouche et al. introduced high order rotor slot harmonic components from 

instantaneous phase power induced by broken rotor bar as a fault signature under low 

slip. They indicated there is great dependence between the load level and the 2𝑘𝑠𝑓 

harmonic components in the partial and total instantaneous power spectrums. They 

also mentioned that in the case using variable speed drives, 2𝑘𝑠𝑓 close to dc 

component depends greatly on the load level and oscillation load. The frequency of 

components related to the failure has strongly been spread in large bandwidths and it 

is proportional to the load variation. Accordingly, the values of instantaneous slip 

cannot be defined accurately and thus it is difficult to identify their amplitude and 

location in the spectrum precisely. To resolve this obstacle, Yahia et al. proposed a 

method based on discrete wavelet transform of the instantaneous reactive power 

signal [117]. The results of this analysis were used for diagnoses of broken bars in 

IMs that operate under time-varying load condition. In [118], Kim et al. proposed a 

new feature (6 − 8𝑠)𝑓 in instantaneous power spectrum for broken rotor bar 

detection. They believed the conventional feature (2𝑠𝑓) is not reliable for broken bar 

detection as it produces some false features in the power spectrum due to influence 

of rotor axial air ducts, rotor anisotropy or load oscillations. They also mentioned 

that (2𝑠𝑓)in the power spectrum might be because of space harmonics of stator 

winding. 

 

2.4.7  Motor Circuit Analysis 

 

A method based on measuring the electromagnetic properties of the induction 

machines, well-known as motor circuit analysis, was also proposed for identification 

of IMs defects. Motor circuit analysis may include simple tests of resistance (milli-

Ohms) impedance, and inductance and phase angle, or may include more complex 

tests like proprietary testing, which is taken on the de-energized rotating equipment. 

To the best of our knowledge, Penrose and co-workers are the only research group 

who has utilized motor circuit analysis hitherto. They found a simple measurement of 

just resistance or inductance alone are extremely anomalous for fault detection and a 

complete combination of standard engineering measurements of resistance, 

impedance, phase angle, and inductance provide a highly accurate view of the IM 

condition. Furthermore, they annotated that the accurate motor circuit analysis of the 

induction machine requires study of AC electrical basics (inductance, impedance, 

phase angle and milli-Ohms of DC resistance). As the circuit of three-phase 

induction machines is expected to have three sets of equivalent windings separated 

by 120º electrical, detection and analysis will include the balance between each 

circuit.  They also alluded that as a low amount of energy with amplified responses is 

applied in motor circuit analysis method, the responses help in evaluating the 

condition of both windings and rotor through the comparative readings [119,120]. 
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2.4.8  Vibration Monitoring 

 

An ideal induction machine generates minor vibration during its operation and any 

malfunction in internal parts of the motor causes this vibration intensive. The flux 

density produces radial magnetic forces between surfaces of stator and rotor when it 

rotates and any incipient failure will increase the levels of mechanical vibration 

[121]. Accordingly, vibration signal is measured and analyzed for diagnosing a faulty 

condition in electrical machine. Vibration monitoring is generally used to detect the 

mechanical failures like rotor misalignment, bearing problems, gear mesh defects 

and mass unbalance [122]. Vibration of stator frame could be a function of an inter-

turn winding fault, single phasing or supply-voltage unbalance [123]. To detect  rotor  

faults in [124], Kang and Kim measured vibration signal using three accelerometers, 

which were located on  the stator  frame  in axial, horizontal, and vertical directions.  

 

In [125], McCully and Landy demonstrated that a broken rotor bar excites the field 

disturbance electromagnetically and thus intensifies the torque modulations and 

vibrations of the housing. Later on, these authors quantified the frequencies of the 

radial vibrations caused by the increased inter-bar currents due to a rotor fault, and 

presented a new method to detect broken rotor bars based on the presence of inter-

bar currents [126]. In [42], Li and Mechefske elaborated a research to compare the 

capability of the vibration monitoring with two other methods, MCSA and acoustic 

noise measurement, for detection of broken rotor bar and bearing failure under 

different speed and load conditions. They elucidated that MCSA is more sensitive 

than the two others for broken rotor bar detection. It was also indicated that, in 

contrast to stator current monitoring, the sideband amplitudes in the vibration signal 

depend on the motor speed more than external load. In [122] also emphasized that 

vibration monitoring is an important and reliable technique to detect bearing and 

other strictly mechanical failures. 

 

Vibration analysis is sensitive to both rotor and stator faults. Nevertheless, the main 

weakness of this technique is the need of detailed information about design 

characteristics of motor. For instance, response functions of frequency must be 

known for quantification of the fault because mechanical and electrical responses 

depend on position of accelerometer [127].  

 

2.4.9  Voltage Monitoring 

 

Different types of condition monitoring based on voltage measurement have been 

developed for fault detection in electrical machine. These methods differ depends on 

the type of voltage, i.e. the line-neutral voltage (the voltage between the supply and 

the stator neutrals), shaft voltages or voltage induced in the stator winding after 

electrical machine disconnection, is measured. The condition monitoring based on 

measurement of shaft voltage is only used for fault detection in generator, which is 

not the focus of this research. The other two voltages have considerably been used 

for fault detection in induction machine and so they are discussed as below. 
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In [95], Elkasabgy et al. introduced a condition monitoring method based on 

measurement of the voltage induced in the stator after induction machine 

disconnection for broken rotor bar detection. When the motor is disconnected from 

the supply, the stator currents rapidly come down to zero, and thus the rotor current 

is the only source of induced voltages in the stator windings. If any bar is cracked, it 

will then directly influence the induced voltages in the stator windings after 

induction machine disconnection. In a healthy condition of induction machine, when 

the stator phases are disconnected, the magneto-motive force generated by the 

current of rotor bar is predominantly sinusoidal. Accordingly, induced voltage in the 

stator due to this magneto-motive force should not have any significant harmonic 

content other than the fundamental because of the stepped rotor current distribution. 

However, if any bar is broken or cracked, the wave-shape of the magneto-motive 

force will deviate from its sinusoidal nature and so the induced stator voltage will 

contain harmonic contents other than the fundamental. Differences in voltage spectra 

when the motor is healthy with the time it has no ideality in the rotor bar can be used 

for detection of broken rotor bar. It was declared that voltage monitoring is a reliable 

method even for an unloaded machine as the effects of source non-idealities (such as 

unbalance, presence of time harmonics, etc.) and nonlinearity of the machine 

magnetizing characteristics due to the saturation could be removed [128]. Despite of 

its capability, voltage monitoring however has some limitations when applied to the 

practical systems. For instance, it requires tests to be carried out with the motor in the 

healthy state to develop a baseline response. It is also sensitive to the load variation, 

system inertia, rotor temperature and supply voltage [129]. An important drawback 

for voltage monitoring is the magnitude of harmonic components is not sensitive to 

the number of broken bars and thus the fault cannot be qualified. Another problem 

with voltage monitoring is inter-bar currents, dependence of the spectral amplitude 

on the instance of disconnection, and short length of data adversely influence the 

detection accuracy [128]. Nevertheless, further studies have been directed to use an 

advanced signal processing technique to improve the broken bar detection by 

monitoring of induced voltage [129,130]. 

 

In [131], Razik and Didier studied spectral analysis of line-neutral voltage for broken 

bar detection in induction machine operating under several loads. The basis of using 

line-neutral voltage for broken rotor bar relies on rising of harmonic components as 

diagnosis signatures in its spectrum. These components are generated from 

asymmetries induced in the mutual inductance of induction machine because of 

broken rotor bar [132]. Simulation and experimental studies proved the effectiveness 

of using line-neutral voltage for detection of even partial broken rotor bar [132-135]. 

Analysis of line-neutral voltage not only preserves the advantage and simplicity of 

MCSA, but also it is more sensitive to motor failures. For instance, if any broken 

rotor bar exists, extra harmonic frequencies with more significant amplitude 

appeared in the voltage spectrum compared to current spectrum [131]. In addition, 

due to both space distribution of rotor bars and variation of the air-gap permeance, 

the line-neutral voltage spectrum shows other high harmonics, known as rotor slot 

harmonics. Nonetheless, analysis of line-neutral voltage signatures still requires 

some improvements to make it an appropriate parameter for overall fault diagnosis of 

induction machines. 
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2.5  Signal Processing Techniques 

 

Basically, the raw signal acquired by the sensor is complex and needs to be 

converted to a more understandable signal. Signal processing encompasses the 

processing, analysis and transforming the raw signal to a meaningful representation 

of the information contained in the raw signal. Computer algorithms, based on 

mathematical transformer, are applied to a raw signal to extract the important 

information on the specific issue for decision-making. Signal processing can be 

carried out either in time domain, frequency domain or time-frequency domain [136]. 

Selection of processing domain and characteristic features depends on the nature of 

signal and required information. Signal processing and data analysis accompanied 

with condition monitoring are the key parts of the fault detection scheme in electrical 

machine. Signal processing techniques help to interpret the information obtained 

from the motor and extract the fault signature. Accordingly, to complete the 

discussion on fault diagnoses of induction machine, the various signal processing 

techniques will be presented in this section. 

 

2.5.1  Time domain analysis  

 

Time domain graphs show how a signal changes over time and the analysis of 

mathematical functions or physical signals is performed with respect to time. Time 

domain analysis has a significant advantage that provides a great deal of detailed 

information and almost no information is lost. Common statistical analyses are 

applied to describe the probability density function of a time-varying signal. In time-

domain analysis, the fault features may be extracted from the signals through 

calculation of various statistical parameters, such as means, standard deviation, 

variances, covariance, root mean square, skewness, kurtosis, crest factor, Shape 

factor, entropy error, entropy estimation, upper and lower bound of histogram, and 

envelop [88,137-138]. 

 

The other type of time domain signal used for fault detection is envelope signal, 

which is extracted from original signal. When the broken rotor bar occurs in the 

squirrel cage electrical machine, frequency components of 2𝑠𝑓 is induced in stator 

current signal. Based on the backward field theory, Bellini et al. explained the flux 

density in electrical machines in two states; the motor is healthy or faulty [6]. In case 

of rotor asymmetry caused by broken rotor, the stator current can be written as 

[139,140]: 

 

𝑖(𝑡) = 𝐼𝑓 cos(2𝜋𝑓𝑡 − 𝜑) + ∑ 𝐼(1−2𝑘𝑠)𝑓
𝐾

𝑘 cos(2𝜋(𝑓 − 2𝑘𝑠𝑓)𝑡 − 𝜑(1−2𝑘𝑠)𝑓
𝑘 ) +

∑ I(1+2ks)f
K

k cos(2π(f + 2ksf)t − φ(1+2ks)f
k )                                    2.15 

 

where 𝜑: Main phase shift angle of stator current; 𝐼(1−2𝑘𝑠)𝑓
𝐾 : Amplitude for harmonic 

component 𝑓(1−2𝑘𝑠)𝑓; 𝐼(1+2𝑘𝑠)𝑓
𝐾 : Amplitude for harmonic component𝑓(1+2𝑘𝑠)𝑓; 

𝜑(1−2𝑘𝑠)𝑓
𝑘 : Phase shift angle of harmonic component 𝑓(1−2𝑘𝑠)𝑓; 𝜑(1+2𝑘𝑠)𝑓

𝑘 : Phase shift 

angle of harmonic component 𝑓(1+2𝑘𝑠)𝑓. 

 

http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Time
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Equation (2.15) can be rephrased as: 

 

𝑖(𝑡) = 𝐴(𝑡) cos(2𝜋𝑓𝑡) + 𝐵(𝑡) sin(2𝜋𝑓𝑡)                              2.16 

 

𝐴(𝑡) = 𝐼𝑓 cos(𝜑) + ∑((𝐼(1−2𝑘𝑠)𝑓
𝐾

𝑘

cos 𝜑(1−2𝑘𝑠)𝑓
𝑘 + 

𝐼(1+2𝑘𝑠)𝑓
𝐾 cos 𝜑(1+2𝑘𝑠)𝑓

𝑘 ) cos(2𝜋(2𝑘𝑠𝑓))𝑡 + 

(𝐼(1+2𝑘𝑠)𝑓
𝐾 sin 𝜑(1+2𝑘𝑠)𝑓

𝑘 − 𝐼(1−2𝑘𝑠)𝑓
𝐾 sin 𝜑(1−2𝑘𝑠)𝑓

𝑘 sin(2𝜋(2𝑘𝑠𝑓))𝑡)      2.17 

 

𝐵(𝑡) = 𝐼𝑓 sin(𝜑) + ∑((𝐼(1−2𝑘𝑠)𝑓
𝐾

𝑘

sin 𝜑(1−2𝑘𝑠)𝑓
𝑘 + 

𝐼(1+2𝑘𝑠)𝑓
𝐾 sin 𝜑(1+2𝑘𝑠)𝑓

𝑘 ) cos(2𝜋(2𝑘𝑠𝑓))𝑡 + 

(𝐼(1−2𝑘𝑠)𝑓
𝐾 cos 𝜑(1−2𝑘𝑠)𝑓

𝑘 − 𝐼(1+2𝑘𝑠)𝑓
𝐾 cos 𝜑(1+2𝑘𝑠)𝑓

𝑘 sin(2𝜋(2𝑘𝑠𝑓))𝑡)        2.18 

 

The Equation (2.16) can be rewritten as follows: 

 

𝑖(𝑡) = 𝐼𝑚(𝑡) sin(2𝜋𝑓𝑡 + 𝜃(𝑡))                                 2.19 

with: 

𝐼𝑚(𝑡) =  √𝐴(𝑡)2 + 𝐵(𝑡)2                                       2.20 

 

𝜃(𝑡) = arctan (
𝐴(𝑡)

𝐵(𝑡)
)                                             2.21 

 

From Equation (2.19), the current envelope and its phase shift that depend on broken 

rotor bar can be extracted [67]. As shown in correlations of 𝐴(𝑡) and 𝐵(𝑡), the 

broken rotor bar in squirrel cage electrical machine induces amplitude at frequency 

components of 2𝑘𝑠𝑓 in the stator current. The amplitude of these frequency 

components can be used as indication of fault, named fault-related feature [141,142]. 

In [83], Filippetti et al. proved the feature amplitude increases when the number of 

broken bars increases and on the other hand, the 2𝑘𝑠𝑓 term rises due to increase of 

the slip [143]. The modulation index (𝛽) for this fault frequency, and the estimated 

frequency amplitude (𝐼(1−2𝑘𝑠)𝑓
𝐾 ) can be thus referred as [66,83,144]: 

 

𝛽 ≈
𝐼(1−2𝑘𝑠)𝑓

𝐾

𝐼𝑓
=

𝑁𝐵𝑅𝐵

𝑁𝑅
                                         2.22 

 

In this purpose, Hilbert transform is suitable for extraction of faults with low 

frequency, like features corresponds to "2𝑘𝑠𝑓", which are used for broken rotor bars 

diagnosis in squirrel cage electrical machine. Hilbert transform is an ideal phase 

shifting tool in signal processing techniques to extract the instantaneous magnitude 

(envelope) of current signal. The important advantage of Hilbert transform is 

increasing of resolution, both in amplitude and frequency regions [141]. The 

complete explanation on application of Hilbert transform for current analysis of 

electrical machines, both in faulty and healthy conditions, is discussed in [143]. 

Some researchers used Hilbert transform to extract the envelope signal,  and the 
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statistical features obtained from the envelope were used to detect broken rotor bar in 

squirrel cage electrical machine [138,145-147]. 

 

2.5.2  Frequency domain analysis  

 

A raw signal, which is in time domain, is transformed to the frequency domain using 

different spectral estimation techniques. These techniques can be based on 

nonparametric, parametric or high-resolution spectrum analysis methods [6,148,149]. 

Nonparametric methods basically apply conventional Fourier transform and 

generally values, such as amplitudes, powers, intensities, or phases are calculated. 

Variation of the calculated parameter is then presented versus frequency and this 

spectra indicates signatures related to the failure under observation. Other statistical 

features, like frequency centre, root mean square frequency and root variance 

frequency also can be extracted from frequency domain [150,151]. Power spectral 

density (PSD) analysis is another technique used for electrical machines fault 

detection [152-155]. Besides Fourier transform analysis, there are other 

nonparametric methods, like periodogram [156] and Welch analysis [157]. Similar to 

Fourier transform, these analysis methods only provide the value of different 

frequencies and their amplitudes in a signal. There are several methods that provide 

higher order spectra, defined in terms of higher order statistics. These higher order 

spectra bring insights into non-linear coupling between frequencies (as it involves 

both amplitudes and phases) of a signal [158]. An example for such analysis is 

Bispectrum, called third-order spectrum, which is defined in terms of the 2-

dimensional Fourier transform [159]. Another example is Cepstrum [160], which is 

the inverse Fourier transform of the logarithmic spectrum.  

 

Nonparametric methods estimate the statistical parameters from the available data 

directly. Parametric methods, as expected, use a different approach for spectral 

estimation. In this method, the data is first modeled as the output of a linear system 

driven by white noise, and then the parameters of that linear system are estimated. 

Autoregressive, such as Yule–Walker, Burg, covariance, or modified covariance,  is 

generally used to establish a model fitted with time series of the signal. The model 

parameters are then used to compute the frequency spectrum. One more practical 

signal analysis in frequency domain is Prony’s method, considered as a high 

resolution parametric method. Prony’s method first extracts valuable information 

from a raw signal and then creates a series of damped complex exponentials or 

sinusoids. Prony’s method allows estimation of frequency, amplitude, phase and 

damping components of a signal. Several researchers used Prony’s method for 

broken rotor bar detection [161-163]. High-resolution spectrum methods, such as 

multiple signal classification (MUSIC), Root-MUSIC and Zoom-MUSIC, compute 

the autocorrelation matrix of the time series signal, and its eigenvalues can be 

separated into signal and noise spaces. Another type of high resolution technique 

recently introduced for induction machine fault detection is fast orthogonal search 

algorithm [164,165]. There are also other types of frequency estimation algorithm 

based on FFT with resolution improvement, such as, the zoom- FFT and the chirp Z-

transform methods [166]. Another useful transform, Hilbert transform, has also been 

used for machine fault detection and diagnostics. In [167], Aydin et al. presented a 

brief review on using Hilbert transform for broken rotor bar detection. 
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Although Fast Fourier Transform (FFT) analysis is traditionally used in fault 

detection of electrical machine, transforming a signal from time-domain to the 

frequency-domain leads to information loss. This problem is considered to be one of 

the main disadvantages of the frequency-domain transition [168]. In industrial 

environment, there are some practical limitations for application of MCSA method 

based on FFT analysis to detect rotor failure at low slip. This inability of method is 

related to the effects of time-varying load and confusing mechanical frequencies on 

the spectrum spectral leakage due to finite-time window and need of high frequency 

resolution for Fourier- based analysis [143,146].  

 

2.5.3  Time-Frequency domain analysis 

 

In order to overcome the problem of non-stationary signals, time-frequency analysis, 

consists of the 3-D time, frequency, and amplitude representation of a signal, has 

been proposed. The most popular time-frequency analysis methods are short-time 

Fourier transform (STFT), wavelet transform and Wigner-Ville distribution. Short-

time Fourier transform divides the whole waveform signal into segments with short-

time window and then apply Fourier transform to each segment. Consequently, the 

STFT can extract the frequency information of a signal while keeping its time 

information. Accordingly, this technique allows observation of the frequency content 

of the signal in any time interval. On the other hand, the STFT reduces the frequency 

resolution of the signal because the signal is divided into smaller sub-blocks which 

represent less observation time. In other words, the frequency resolution is limited by 

the size of the segments. Therefore, the frequency and time resolution of the STFT 

technique depend on the length of the window. A longer window means higher 

frequency resolution but lower time resolution while a shorter window means lower 

frequency resolution but higher time resolution. Accordingly, the window has to be 

selected as a tradeoff between time and frequency resolutions. In summary, STFT 

method reduces the computational cost as well as time period of data acquisition. 

Therefore, better time resolution is achieved and the condition is close to the 

assumption of being stationary. However, since the frequency resolution in STFT is 

poor, it is not an attractive analysis method for diagnosis purposes [94]. 

 

Another time-varying spectral representation is Spectrogram that can be estimated by 

computing the squared magnitude of the STFT of the raw signal. Wigner-Ville 

distribution is the basic transform of bilinear transforms that, unlike STFT, does not 

segment the data. It is based on the instantaneous frequency, which is the derivative 

of the phase of the signal. The Wigner-Ville distribution is often smoothed by 

filtering functions in order to reduce the interference called Smoothed Pseudo-

Wigner-Ville distribution [42,169,170]. 

 

Another transform for time–frequency analysis is wavelet transform that is a time-

scale representation of a signal [171]. Wavelet analysis was introduced to overcome 

the resolution problems of STFT. In recent years, wavelet analysis has attracted the 

researchers' attention in areas where signal processing is required. Wavelet analysis 
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of a waveform signal expresses the signal in a series of oscillatory functions with 

different frequencies at different time. Wavelet transform can provides both the 

frequency information and the time information of a signal by using a variable length 

window. It divides the signal into time-scale space and the size of the window at time 

and frequency (scale) is not rigid [172]. The way wavelet analysis localizes signal’s 

information in the time–frequency plane makes it especially appropriate for analysis 

of non-stationary signals. It is, therefore, a good alternative to traditional STFT 

analysis. In [173], Mallat introduced a practical version of wavelet transform, called 

wavelet multi-resolution analysis, for the first time. Basically it is based on the fact 

that, one signal is decomposed into a series of small waves belonging to a wavelet 

family. There are different types of Wavelet transform techniques widely used in 

electrical machine condition monitoring [19,174]. 

 

2.6  Broken Rotor Bar Fault Detection in Induction Machine 

 

The various types of techniques were used to detect broken rotor bar fault in IM. 

Table 2.3 presents the type of techniques used for broken rotor bar detection in the 

cited papers. The importance of broken rotor bar fault is its subsequent disastrous 

failures. This fact in addition to increasing the application of LS-PMSM in various 

fields as well as lack of information about detection of broken rotor bar fault in LS-

PMSM is the major  motivation  to  commence  a  research  based  on  detection of 

broken rotor bar fault  in LS-PMSM which is presented in the subsequent chapters. 

http://www.sciencedirect.com/science/article/pii/S0888327011002032#t0010
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Table 2.3: Summary of published paper with the aim of broken rotor bar detection in IM (continued) 

Ref 
Data 

Monitoring 

Signal 

Processing 

Decision 

Making 
Purpose Achievement and Limitation 

[37] 
Stray Flux, 

MCSA 
Spectrum analysis ANN 

To compare the performances of current and flux 

monitoring for voltage unbalance and BRB detections.  

A simple external stray flux sensor is more efficient than the classical 

stator current sensor to detect BRB and voltage unbalance using data 

processing at low-frequency resolution especially in the case of unloaded 

machine.  

[56] Air gap Torque Fourier Analysis - 
To develop Vienna monitoring method for BRB 

detection. 

Developed Vienna monitoring works without the need of a position or 

speed sensor. 

Limitation: Partly cracked rotor bars could not be detected. 

[64] MCSA - - 
To present a model for predictive diagnosis of BRB 

and breakage in end-ring connector segments. 

The effects and implications of BRB on core loss distributions were 

quantified and described. 

The proposed model has great potential in future applications to generate 

data bases for use in overall non-invasive diagnostics of faults. 

[67] 

Air-Gap 

Torque, 

MCSA,IP  

Fast Fourier 

transform 
- 

To evaluate the performance of different monitoring 

techniques for detection and quantification of BRB. 

MCSA provides more accurate information to diagnose and quantify the 

BRB. 

  

[68] 
Current  

(Start-up) 

Discrete Wavelet 

Transform 
- 

To improve the start-up current monitoring procedure 

for BRB detection using a filter that actively tracks the 

changing amplitude, phase and frequency to extract the 

fundamental from the transient. 

This method does not require parameters such as speed or number of 

rotor bars. It is not load dependent and can be applied to IMs that operate 

continuously in the transient mode. 

[92] 
MCSA,   

Stray Flux 

Zoom Fast Fourier 

transform 
- 

To investigate MCSA and stray flux MTs for BRB 

detection. 

The Zoom Fast Fourier transform improved the frequency resolution in a 

narrow frequency bandwidth by using a small number of samples. The 

procedure can be applied whatever the load is, even when the shaft of 

the machine is free of mechanical load or even in the manufacturing 

process. 

[94] IP 
Discrete Wavelet 

Transform 
- 

To improve IP monitoring for BRB detection under 

various load levels. 

Wavelet approach applied to IP showed superior ability for BRB 

detection compared to the frequency domain analysis. 

[98] 
Instantaneous 

angular speed 

Fast Fourier 

Transforms 
- 

To investigate the effects of measurement noise in the 

use of IAS for BRB and shaft misalignment detection 

The measurement noise of IAS could be controlled by the IAS 

measurement parameters: the resolution of the encoder and the length of 

the data stream. IAS measurement is better than that of conventional 

vibration in diagnosing incipient faults in the motor driving system. 

[105] 
MCSA, IP, 

Torque 

Fast Fourier 

transform 
- 

To evaluate the performance of different monitoring 

techniques for BRB detection under various load 

levels. 

The IP monitoring showed the best ability for fault detection. 
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Table 2.3: Summary of published paper with the aim of broken rotor bar detection in IM (continued) 

Ref 
Data 

Monitoring 

Signal 

Processing 

Decision 

Making 
Purpose Achievement and Limitation 

[107] IP Frequency Domain - 
To present a diagnosis method for detection and 

quantification of the BRB and air-gap eccentricity. 

The spectrum of the instantaneous power is clear from any component at 

the fundamental supply frequency, and the fault characteristics can be 

highlighted, which is effective toward the separation of mixed faults and 

the quantification of the fault extent. 

[115] IP Frequency Domain - 
To  propose a new strategy for discrimination of 

broken rotor bar and oscillating load. 

A broken bar fault can be detected and diagnosed, even in the presence 

of load oscillations. A fault severity factor was proposed for broken rotor 

bar fault quantification. 

[126] Vibration 
Fast Fourier 

Transforms 
- To develop a vibration monitoring for BRB detection. 

Interbar currents which produce an axial force can be used in vibration 

monitoring for BRB detection  

[128] 
Induced 

Voltage 

Fast Fourier 

Transform 
- 

To proposes a novel monitoring technique for BRB 

detection. 

This technique is reliable enough for BRB detection even for an 

unloaded machine.       

Limitation: Interbar currents, dependence of the spectral amplitude on 

the instance of disconnection, and short length of data adversely affect 

the detection technique. The number of broken bars can not be 

identified. 

[129] 
Induced 

Voltage 

Fast Fourier 

transform and 

Wavelet 

- 

To investigate the limitations and harmonics of the 

induced voltage after supply disconnection harmonics 

for BRB detection.  

Fourier transform did not provide information about fault severity and 

load variations. A method based on wavelet analysis of induced voltage 

spectrum was developed for BRB detection                                                                                                                         

Limitation: Tests need to be carried out for healthy motor to develop a 

baseline response. It is sensitive to changes in load, system inertia, rotor 

temperature and supply voltage.  

[130] 
Induced 

Voltage  

MUSIC & 

STMUSIC 
- 

To develop induced voltage monitoring for BRB 

detection 

The proposed approach is effective regardless the load condition of the 

machine, source characteristics and iron saturation.        

[134] 
Neutral 

Voltage 
Hilbert Transform - 

To investigate neutral voltage monitoring for BRB 

detection. 

The harmonic frequency related to BRB appears as clear jumps in the 

Hilbert phase. 

[137] 
Current 

(Start-up)  

Discrete wavelet 

transform 

Principle 

Component 

Analysis, Kernel 

PCA , Support 

vector machine 

To develop transient current monitoring procedure 

using intelligent system for detection and classification 

of various faults including BRB . 

Feature reduction and extraction using component analysis via PCA and 

KPCA are highlighted. The performance of WSVM is validated by 

applying it to faults detection and classification of induction motor based 

on start-up transient current signal.                                                                          

 Limitation: A proper preprocessing for the transient current signal is 

needed to improve emerging the salient differences between conditions 

in induction motors. 
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Table 2.3: Summary of published paper with the aim of broken rotor bar detection in IM (continued) 

Ref 
Data 

Monitoring 

Signal 

Processing 

Decision 

Making 
Purpose Achievement and Limitation 

[139] 
Current 

(Envelopes) 

Discrete wavelet 

transform 
- 

To propose a new technique, slip independent, for BRB 

detection under different load levels. 

The proposed method gives the same reliable results for BRB detection 

under different loads levels when applying to the stator-current space-

vector magnitude and the instantaneous magnitude of the stator-current 

signal. 

[142] 
Current 

(Envelopes) 
Time domain 

Gaussian Mixture 

Models and the 

Bayesian 

Maximum 

To develop MCSA monitoring procedure using 

envelope extraction of current spectrum for BRB and 

stator short-circuit detection. 

It diagnoses the fault severity, i.e. number of interturn short circuits in 

stator windings or the number of BRBs. 

[152] MCSA 

Short-time Fourier 

transform, Wavelet 

Transform 

- 
To improve MCSA monitoring procedure for BRB and 

stator shorted turns detection. 

Wavelet decomposition is superior to STFT.  Power spectral density for 

wavelet details was introduced as a merit factor for fault diagnosis. The 

proposed method can diagnose shorted turns and BRB in nonconstant-

load-torque IM applications. 

[153] MCSA 
Fast Fourier, 

Wavelet transform 
- To proposes a new method for early fault detection. 

The approach has been proved to be effective to detect the failure in its 

very early stages. 

[157] 
Current (zero 

crossing times) 

Fast Fourier 

Transforms 
- 

To investigate zero crossing times analysis of current 

spectrum for BRB detection.  

The 2sf frequency component is independent of inertia, load, and 

harmonics, and thus it is suitable as an index for broken rotor bar.                                                                                                          

Limitation: Accurate prediction of rotor faults depends on the ability of 

precise reading of motor slip in order to extract the right frequencies 

from the spectrum. 

[162] MCSA 

Discrete Fourier 

transform & Prony 

Analysis 

- 
To propose a BRB diagnostics method based on Prony 

analysis. 

The method is able to detect the BRB sideband frequency components in 

light and time-varying load conditions. 

[167] MCSA 

Sliding windows 

based on Hilbert 

transform. 

- 
To propose a new method for early fault detection at no 

load condition. 

The method determines the number of BRBs at absolute no-load 

condition. One and two broken rotor bars were detected under no-load 

conditions. 

 Limitation: the effect of load needs to be considered. 

[175] 

Acoustic , 

MCSA , 

Vibration 

smoothed pseudo 

Wigner-Ville 

distribution 

- 

To evaluate the performance of different monitoring 

techniques for BRB and bearing fault detection under 

different speed and load conditions. 

The stator current is the most sensitive method for the BRB detection. 

Sidebands are independent of load and speed. 

[176] Air gap Torque Fourier Analysis - 
To propose a new approach for on-line monitoring of 

IM drives. 

Vienna Monitoring Method was proposed using output of the current 

and voltage model to estimate electromagnetic torque. 

[177] 

MCSA & 

Extended 

Park’s Vector 

Fourier Analysis - 
To develop on-line current monitoring system for BRB 

and stator short circuit detection. 

A knowledge-based system was constructed in order to carry out the 

diagnosis task from estimated data obtained from experimental 

observations and the knowledge of the IM. 
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Table 2.3: Summary of published paper with the aim of broken rotor bar detection in IM (continued) 

Ref 
Data 

Monitoring 

Signal 

Processing 

Decision 

Making 
Purpose Achievement and Limitation 

[178] MCSA 

Discrete Fourier 

transform & 

Hilbert Transform. 

Statistical-based 

Algorithm 
To improve MCSA procedure for BRB detection. 

A partially BRB for a load level equals to 25% was detected. The 

method does not require a healthy motor reference. 

[179] MCSA 
Wavelet Packet 

Decomposition 

Adaptive Neuro-

Fuzzy 

To present a novel on-line diagnostic algorithm for 

BRB and air-gap eccentricity detection in variable 

speed drive systems. 

Although the algorithm is able to detect the fault with high accuracy, the 

number of training iterations and the CPU processing time were reduced. 

[180] MCSA 
Fast Fourier 

transform& Filter 
Fuzzy 

To improve MCSA monitoring procedure for BRB and 

air-gap eccentricity detection. 

The system was able to detect different IM faults, though very precise 

information about the motor slip is not needed. The amount of data, 

computation and cost were reduced. 

[181] MCSA 

PSD estimation 

using Welch’s 

periodogram 

Multiple 

Discriminate 

Analysis and 

ANN 

To compare ANN and linear discriminate analysis 

using single or multiple signature processing for BRB 

detection. 

The multiple signature processing provides a better accuracy 

performance when compared to the single signature processing. The 

accuracy performance of the ANN is higher than the Linear Discriminate 

Analysis. 

[182] MCSA 
Fast Fourier 

transform 
ANN 

To improve MCSA monitoring procedure for detection 

of various faults including BRB. 

The method does not require any information about the IM or load 

characteristics. 

[183] MCSA 

Maximum 

covariance 

frequency tracking 

, Zoom FFT  

- 
To improve MCSA monitoring procedure for BRB 

detection. 

The constraints of limited time or frequency resolutions of traditional 

Fourier based method were overcome. 

[184] MCAS 
Statistical Time 

domain Analysis  

Bayesian, 

Gaussian Mixture 

Model, Fisher’s 

linear 

Discriminate 

Analysis 

To improve MCSA monitoring procedure for BRB and 

air-gap eccentricity detection. 

Developed system is able to indicate the load level and the type of a fault 

in multi-dimensional feature space representation. 

[185] MCSA Time Domain 

Principle 

Component 

Analysis 

To propose an on-line diagnosis method using a fully 

automatic algorithm, based on the 

eigenvector/eigenvalue analysis of the motor line 

current. 

The proposed method quantitatively identifies two distinct faults, stator 

winding faults and BRBs. 
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Table 2.3: Summary of published paper with the aim of broken rotor bar detection in IM (continued) 

Ref 
Data 

Monitoring 

Signal 

Processing 

Decision 

Making 
Purpose Achievement and Limitation 

[186] MCSA 

DFT , Maximum 

covariance 

frequency tracking 

- 
To improve MCSA monitoring procedure for BRB 

detection. 

The MCMFT allowed achieving high frequency resolution in the 

tracking of supply and rotor slotting frequency for IM. High accuracy 

could be achieved even with low sampling frequency and low 

acquisition period. The procedure is more sensitive to changes in 

frequency than Fourier Transform methods. 

[187] 
MCSA, 

Voltage, Speed 

Wavelet packet 

decomposition 
ANN 

To develop a model-based diagnosis system for 

detection of various faults including BRB. 

The proposed system was shown effective in detecting early stages of 

different IM faults. 

[188] MCSA 
Wavelet packet 

decomposition 
ANN 

To improve MCSA monitoring procedure for BRB and 

air-gap eccentricity detection. 

It provides feature representations of multiple frequency resolutions for 

faulty modes. 

[189] MCSA 

Fourier Analysis,  

Wavelet packets 

decomposition 

- 
To improve MCSA monitoring procedure for detection 

of various faults including BRB. 

The features of BRB and static eccentricity yield similar results in the 

wavelet analysis, but were different in Fourier analysis. Therefore the 

use of both types of analysis together can distinguish the faults. 

[190] MCSA 
Fast Fourier 

transform 
- 

To improve MCSA monitoring procedure for detection 

of various faults including BRB. 

Advanced signal and data processing algorithms composed of an optimal 

slip estimation algorithm, a proper sample selection algorithm, and a 

frequency auto search algorithm for were proposed. 

[191] MCSA 
Fourier Analysis, 

wavelet packets 

Fuzzy Entropy-

ANN 

To improve MCSA monitoring procedure for detection 

of various faults including BRB. 

 An approach was proposed based on Fourier and Wavelet 

transformations and neural network system to classify the faults. 

[192] MCSA 
Wavelet packet 

decomposition 
ANN 

To propose a novel on-line diagnosis algorithm for 

BRB detection. 

The diagnosis can be performed with reduced load condition.                                                  

An accurate measurement of the slip speed is not necessary. 

[193] MCSA 

Fast Fourier 

Transforms 

combine with 

amplitude 

recovery method 

- 
To improve MCSA monitoring procedure for BRB 

detection. 

The ARM algorithm can filter out the fundamental component in stator 

currents of tested induction motor    .                                                                                                  

Limitation: the ARM must be applied in three phases of currents in 

induction machines. 

[194] MCSA WT,PSD - To develop BRB detection methods based on MCSA 
The method has the ability to detect BRB for both constant torque and 

for variable load torque 

[195] 
Current  

(Start-up)  
Complex wavelet - 

To develop start-up current monitoring procedure for 

BRB detection. 

The information contained in the start-up transient signal can be 

effectively separated and detected using a complex vector wavelet 

transform. 
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Table 2.3: Summary of published paper with the aim of broken rotor bar detection in IM (continued) 

Ref 
Data 

Monitoring 

Signal 

Processing 

Decision 

Making 
Purpose Achievement and Limitation 

[196] 
Current 

(Start-up)  
Wavelet Ridge - 

To develop start-up current monitoring procedure for 

BRB detection. 

The influence of power frequency was effectively eliminated. Detection 

scheme was sensitive enough even for the case of only one BRB. 

[197] 
Current  

(Start-up)  

Discrete wavelet 

transform 
- 

To develop start-up current monitoring procedure for 

BRB detection. 

The method is not load dependent and can be effective on small lightly 

loaded machines. 

[198] 
Current  

(Start-up)  

Discrete wavelet 

transform 
- 

 To develop start-up current monitoring procedure for 

BRB detection. To compare the influence of the 

Discrete wavelet transform parameters (type of mother 

wavelet, order of the mother wavelet, sampling rate, or 

number of levels of the decomposition) over the 

diagnosis. 

The tests show that if the start-up transient is not very short,the 

reliability of the proposed method for BRB detection is similar to that of 

the classical approach, based on the Fourier transform, in the case of 

loaded motors, but, in addition, the method can detect faults in an 

unloaded condition, and it allows a correct diagnosis of a healthy 

machine in some particular cases where Fourier analysis leads to an 

incorrect fault diagnosis.. 

[199] 
Current 

(Start-up)  

Discrete wavelet 

transform 
- 

To develop start-up current monitoring procedure for 

distinguishing various faults including BRB and other 

phenomena, such as load torque oscillations. 

The proposed methodology showed promising ability for the reliable 

discrimination of simultaneous electromechanical faults and the 

diagnosis of faults combined with other phenomena. 

[200] 
Current 

(Park’s Vector) 
Frequency Domain - 

To introduce a new approach based on spectral analysis 

of the current Park’s vector modulus for BRB 

detection.  

Even for the case of only one BRB, this characteristic component is 

clearly visible. 

[201] Current 
Park’s 

transformation 

 Bayes Minimum 

Error 

To develop a pattern recognition technique for BRB 

detection. 

 This algorithm can be revised to include other faults such as eccentricity 

and phase unbalance. It also, can be applied for fault classification in 

other electric machines. 

[202] 
Current 

(Park’s Vector) 
Hilbert Transform - 

To improve MCSA monitoring procedure for detection 

of various faults including BRB. 

Hilbert Modulus showed the same BRB detection ability as the Extended 

Park’ Vector Approach. The vital advantage of the former is the smaller 

hardware and software.  

[203] 

Current 

(Envelope , 

Start-up)  

Continuous 

wavelet transform 
- 

To develop start-up current monitoring procedure using 

envelope extraction of current spectrum for BRB 

detection. 

The procedure is not affected by various other factors, such as initial 

rotor position, phase of the supply, and supply imbalance. It is able to 

classify the different degrees of BRB.                    

 Limitation : A partial BRB could not be indicated. 
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Table 2.3: Summary of published paper with the aim of broken rotor bar detection in IM (continued) 

Ref 
Data 

Monitoring 
Signal Processing Decision Making Purpose Achievement and Limitation 

[204] 
Neutral 

Voltage 

Fast Fourier 

Transforms 
- 

To investigate neutral voltage monitoring for BRB 

detection under supply unbalance and speed ripples. 

Besides BRB detection, a conclusion on the level of vibration in the 

motor as well as the level of unbalance in the voltage supply could be 

drawn. 

[205] 
MCSA , 

Vibration 

Time and 

Frequency Domain 

ANN , 

Dempster–Shafer 

theory 

To develop a procedure based on vibration and current 

monitoring for detection of various fault including 

BRB. 

The fusion of classification results from vibration and current classifiers 

increases the diagnostic accuracy. It is essential to develop feature 

extraction and selection techniques to determine the state of machine 

condition to achieve reliable classifiers. 

[206] 
MCSA , 

Vibration 

Time and 

Frequency Domain 

Independent 

Components 

(ICs) , Principal 

Components 

(PCs) 

, Support Vector 

Machines 

(SVMs) 

To develop a procedure based on vibration and current 

monitoring for detection of various fault including 

BRB. 

Selecting the proper parameters values through cross-validation, a 

classification model with high performance and accuracy was achieved. 

The combination of ICs (Classifier) and SVMs (training) can serve as a 

promising alternative for intelligent faults diagnosis in the future. 

[207] 
MCSA , 

Vibration 

Time and 

Frequency Domain 

 kernel PCA,  

kernel ICA , 

SVMs 

To develop a procedure based on vibration and current 

monitoring for detection of various fault including 

BRB. 

The kernel ICA outperforms kernel PCA in clustering based on the 

investigation of average of Euclidean distance. The nonlinear feature 

extraction can improve the performance of classifier with respect to 

reduce the number of support vector. The application of nonlinear 

feature extraction and SVMs can serve as a promising alternative for 

intelligent faults diagnosis in the future. 

[208] 
MCSA , 

Vibration 

Time and 

Frequency Domain 
- 

To develop a procedure based on vibration and current 

monitoring for detection of various fault including 

BRB. 

A decision fusion system for fault diagnosis, which integrates data 

sources from different types of sensors and decisions of multiple 

classifiers were proposed. 

[209] 
MCSA , 

Vibration 

Time and 

Frequency Domain 

ANNs , Fuzzy , 

CART 

To develop a procedure based on vibration and current 

monitoring for detection of various fault including 

BRB. 

The proposed model is able to classify and diagnose IM faults. 

[210] Vibration WPD,EMD ANN 

To integrate the fine resolution advantage of WPD with 

the self-adaptive filtering characteristics of empirical 

mode decomposition (EMD) to early fault diagnosis 

Ability to extract weak signals and early fault detection of rotating 

machinery 
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Table 2.3: Summary of published paper with the aim of broken rotor bar detection in IM 

Ref 
Data 

Monitoring 
Signal Processing Decision Making Purpose Achievement and Limitation 

[211] MCSA Stationary WPD Multiclass SVMs 
BRB feature extraction by SWPT under lower-

sampling rate 

Lower computation and cost without any effect on the performance of 

SWPT to detect BRB 

[212] MCSA DWT - 
To investigate the ability of different types of wavelet 

functions for early BRB detection 

The reliability of the fault detection depends on the type of wavelet 

function applied for decomposition of the signal 
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2.7  Research Trends in LS-PMSM 
 

Detection of broken rotor bar, as an important fault in various types of squirrel cage 

electrical motors, can absorb great attentions. Hitherto, several researches have been 

conducted for broken rotor bar detection in induction machines. However, it is fair to 

declare that no work has been presented to detect broken rotor bar in LS-PMSM as it 

is new in industry. 

 

The role of rotor bars in LS-PMSMs is to the speed up the rotor to the synchronous 

speed at startup. The rotor bars also moderate any speed fluctuations that may occur 

because of sudden load changes. During steady-state operation, if the load abruptly 

changes, an oscillatory movement will be superimposed on the normal synchronous 

rotation of the shaft and rotor bars damp out these oscillations. Consequently, 

indication of broken bar can only be found during transient part of motor running. 

Transient MCSA has proven as a valuable source of information in some real 

situations. 

 

 In the case of broken rotor bar fault, it is difficult to find the exact fault feature like 

𝑓𝑏𝑟𝑏 = (1 ± 2𝑘𝑠)𝑓 or 𝑓𝑏𝑟𝑏 = (
𝑘

𝑝
(1 − 𝑠) ± 𝑠)𝑓 because of the slip “𝑠” change. As the 

slip changes, the frequency value related to the broken rotor bar varies and then it 

cannot be determined accurately. Accordingly, in the case of slip change it is useless 

to use frequency domain analysis and using time, and time-frequency domain 

analysis can be a solution for this situation. A graphical interpretation for the 

propagation mechanism of the rotor fault harmonics is depicted in Figure 2.7. The 

periods of the fault harmonics are illustrated on the x-axis, ordered according to the 

propagation mechanism, whereas the y-axis shows the corresponding frequencies. 

This illustration may help to understand the effect of rotor faults in three different 

signal processing analysis. 

 

The importance of rotor fault in addition to increasing the application of LS-PMSM 

in various fields and lack of information about rotor fault detection in this type of 

motor are the major motivation to commence a research on rotor fault detection in 

LS-PMSM. 
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Fig. 2.7: Time–frequency propagation of the rotor fault components [20]. 

 

2.7  Summary 

 

This chapter presented an overview on the trends in the detection of broken rotor 

bars fault in squirrel cage electrical machines. The advantages of LS-PMSM 

illustrated as new development of squirrel cage electrical machines in industry. 

Although the squirrel-cage rotors are rugged, broken rotor bar does occur due to 

various stresses that machine is subjected to. Broken rotor bar is of importance, as it 

brings about secondary faults that cause the machine fails to work. To prevent such a 

cumulative destructive process, the problem should be detected early. The growth of 

employing LS-PMSM in the industry is started and this type of fault has not been 

investigated for this motor, because of that this fact is introduced as the main 

motivation of this research work. 

 

Condition monitoring techniques used in electrical machines were introduced. The 

characteristic fault components in the spectrum obtained from various sensors, such 

as stator current signals, leakage flux signals, and motor vibration signals were also 

reviewed. There is a consensus in scientific literature that motor current signature 

analysis is the most constructive technique for broken rotor bar detection because it 

is a noninvasive monitoring technique. However, without an effective signal 

processing method, the fault detection fails. Signal processing can be carried out 

either in time domain, frequency domain or time-frequency domain. The 
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characteristics of signal processing methods described in order to analyze the 

reference signal of motor for the purpose of feature extraction.  

 

Accordingly, a research activity based on motor current signature analysis was 

designed for broken rotor bar detection in LS-PMSM. The fault under observation, 

here, was broken rotor bar. Time domain analysis as well as time-frequency analysis 

of signal were investigated to diagnose the failure at its early stage (when just one 

bar has been broken) under various levels of load. A detail description of 

experimental activity and results will be presented in the following chapters. 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1  Introduction 

 

This chapter presents the methodology employed in the research design for detection 

of broken rotor bar in LS-PMSM. The methodology contains four main stages in this 

study and each stage includes various aspects. A brief overview of the methodology 

employed in this research is depicted in Figure 3.1. The first stage includes modeling 

of LS-PMSM using finite element method (FEM) in healthy and faulty conditions. In 

this stage, a 2-D model is developed for three-phase 4-pole LSPMSM. The model is 

obtained by Ansoft® Maxwell 2D software based on the real dimensions of motor, 

which is used in the work. The approach used here provides an advanced tool for 

simulation of motor that yields accurate results. The output of this stage is first-hand 

information on the motor parameters that can be used for fault detection analysis. In 

the second stage, experimental activities are conducted to monitor motor 

performance in the cases there is no broken bar and one broken bar. Full explanation 

on the instruments or devices used for testing and data acquisition is provided in 

Section 3.3. In the fourth stage, the feature extraction methods based on time and 

time-frequency domain analyses are applied in order to determine the features that 

can be related to the fault under observation. In the final stage, to identify which 

features are reliably attributed to the broken bar, statistical methods like boxplots and 

analysis of variance (ANOVA) are used to analyze the features determined in stage 

3. Both experimental and simulation data are considered. 
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Figure 3.1: Methodology Employed in Research Design 
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3.2  Simulation of Electrical Motor with Finite Element Method (FEM) 

 

Numerical methods, like boundary element method, finite difference method and 

FEM, are commonly used to analyze the electromagnetic field problems in electrical 

machines. Each of these methods has several advantages and some drawbacks. For 

example, finite difference method is not easily applicable to the field involving rapid 

changes of the gradient or complex geometries. Nodal distribution can be very 

inefficient. Equally, boundary element method is not efficient at handling non-linear 

materials [213]. However, FEM includes nearly all of the advantages of the other two 

methods exclusive of their significant drawbacks. Especially, finite element method 

is a powerful method to analysis electric machines; where many aspects (like 

induced currents, complex geometries, magnetic and electric materials, coupling of 

thermal and mechanical effects, etc.) need to be considered.  

 

The FEM was first introduced for the computation of magnetic field in nonlinear 

electromagnetic devices by [214]. It was mainly for solving nonlinear magneto static 

problems. In [215] pioneered the numerical calculation of transient phenomenon 

during the operation of electric machines. They used time stepping techniques and 

nodal method to predict the transient behavior of electric machines. The use of time-

stepping finite element method for analyzing nonlinear transient electromagnetic 

field problems in electrical machines was presented by [216]. 

 

The FEM can use topology of magnetic circuit and winding layouts of machine to 

model the effects of magnetic nonlinearities and space harmonics. In this approach, 

the geometric model of the machine is divided into a mesh of elements, which means 

triangle or rectangular finite elements. In each finite element, the partial differential 

equations that model the motor are replaced by linear interpolation functions, which 

are solved together with the boundary conditions. To build up a model using FEM, 

some parameters, like general motor specification, design diameter, material and 

winding layouts, are required. The FEM is gaining in popularity as computers 

increase in power and software techniques are implemented that reduce the 

computational time required to find a solution [217].  

 

In recent years, more attention has been taken to study the electromagnetic 

performance of permanent magnet synchronous motors using FEM [218]. In reality, 

different circuits, like stator windings, rotor cage bars and permanent magnets, are 

directly coupled with the electromagnetic field of the electric machines. The 

electrical machine has a very complicated geometry and magnetic circuit and it gets 

further complicated by using rotor cage bars for self-starting.  Accordingly, such 

configuration forces a different modeling which considers the role of rotor as a self-

starting component too. This study looks into the dynamics of LS-PMSM using a 

two-dimensional time-stepping FEM method. The major advantage of using two-

dimensional model is to reduce the computation time. In this research, Ansoft® 

Maxwell 2D software version 16 is used to simulate healthy and faulty condition of 

LS-PMSMs. 
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At the first stage, a three-phase LS-PMSM (750 W, 415 V, four-pole) is designed 

using Ansoft® RMxrpt software. Rotational Machine Expert (RMxprt™) is an 

interactive software package used to design and analyze rotating electrical machines. 

The design diameters of the motor obtained using the real motor measurement. The 

design parameters include power, voltage, frequency, poles, material of stator, rotor 

and shaft, number of stator slots and rotor bar, stator winding layout find in data 

sheet of motor and some from measure of real motor. Figure 3.2 and 3.3 illustrates 

the Maxwell 2D model for a LS-PMSM and the meshed region of simulated LS-

PMSM, respectively. The specifications and dimensions of the machine are shown in 

Appendix A. The RMxprt creates some outputs like rotor and/or stator resistance, 

leakage reactance and/or magnetic reactance, and different type of curves. 

 

Squirrel Cage Bar

Stator Lamination

Winding

Rotor Lamination

Permanent Magnet

Shaft

Flux Barrier

Broken Rotor Bar 

 
Figure 3.2: The geometry of the LS-PMSM with one Broken Rotor Bar 

 

 
Figure 3.3: Cross-Section of LS-PMSM with Mesh Plotting 

 

Once the motor is designed and a corresponding FEM model is created, the FEM can 

be conducted in Maxwell 2D. The detailed process of solving a model in Maxwell 2-

D is described in Figure 3.4 (ANSYS® Maxwell,15.0). The solution type includes 
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the transient solver for modeling of motor as it allows analyzing the solutions at each 

time step of a specified period. Hence, transient solver with time integration method 

based on backward Euler is employed to compute the stator current of LSPMSM. 
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Figure 3.4: The detail process of model solving in Maxwell 2-D 

 

The finite element solution program requires input material characteristics for all 

magnetic materials in the part of pre-processing. The stator and rotor lamination 

materials are DR510-50 and the saturation magnetic flux density is 1.85 T, relative 

permeability of 7000. The B-H curve and Iron loss curve for stator and rotor 

lamination are shown in Appendix B. The NdFeB permanent magnet (N38SH) is 

modeled with a straight line B-H curve in the second quadrant. The residual flux 

density 𝐵𝑟 is 1.235 Tesla and the relative permeability 
𝑟
 is 1.05. The details are 

shown in Appendix C. 

 

The excitation sources comprise of phase windings distribution that should be 

specified. Three-phase sinusoidal voltages are applied to the three stator phase 

windings as excitation. The voltages for the three stator phase windings can be 
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represented by Equation (3.1), where Vp(L−N) is peak phase voltage, φ0 is initial 

phase angle and θ0 is phase angle shift. 

 

𝑉𝑝 = 𝑉𝑝(𝐿−𝑁) 𝑠𝑖𝑛(2𝜋𝑡𝑓 + 𝜑0 + 𝜃0)                                 3.1 

For this study: 𝑉𝑟𝑚𝑠(𝐿−𝐿) = 415𝑉 ,𝑓 = 50𝐻𝑧  and 𝜑0 = 0 

𝑉𝑟𝑚𝑠(𝐿−𝑁) =
𝑉𝑟𝑚𝑠(𝐿−𝐿)

√3
=

𝑉𝑝(𝐿−𝑁)

√2
                                        3.2 

𝑉𝑝(𝐿−𝑁) =
√2𝑉𝑟𝑚𝑠(𝐿−𝐿)

√3
                                                        3.3 

𝑉𝑝(𝐿−𝑁) =
√2×415

√3
= 338.84 𝑉                                         3.4 

𝑉1 = 338.84 𝑠𝑖𝑛(2𝜋𝑡50)                                              3.5 

𝑉2 = 338.84 𝑠𝑖𝑛(2𝜋𝑡50 − 2𝜋 3⁄ )                                3.6 

𝑉3 = 338.84 𝑠𝑖𝑛(2𝜋𝑡50 − 4𝜋 3⁄ )                                3.7 

 

3.3  Experimental Design 

 

This section provides a full understanding of the experimental design used in this 

work. A diagram of the complete experimental test setup is depicted in Figure 3.5. 

To analyze the effects of broken rotor bar in LS-PMSM on the stator current, an 

experimental setup has been designed and built in the electrical power laboratory, 

UPM. Experimental results are used to explain the tests phenomena. The setup 

consists of an electrical power panel, machine test stand which includes the test 

machines and load, and data acquisition system. A power panel including motor 

protection, switch, electromagnetic breaker and contactor are employed for 

distribution of three-phase electrical power. The LS-PMSM is coupled to the torque 

and speed sensors through a mechanical coupling in order to measure the torque and 

speed values in different operation condition. On the other side, a mechanical 

variable load  has  been  provided  by electromagnetic power brake which  is coupled  

to  torque sensor using  a  mechanical  coupling. Experimental data including current, 

torque and speed was acquired from the healthy and faulty motor in identical 

condition under different loads. The data acquisition system samples the current and 

speed, and then stores the collected data on a PC for later analysis. Different load and 

running speed conditions were considered during the motor experiment. Features 

from current signals were extracted to diagnose the broken rotor bar.  

 

There are a number of factors, which influence accuracy of measurement because of 

the nature of parameters measured (high bandwidth, low magnitude). These factors 

are the foundation of the motor and the alignment. The motor must have a firm and 

rigid foundation to eliminate the vibration and noise. Besides that, the misalignment 

reduces efficiency of the motor setup. Thus, all the equipment such as motor, torque 

sensor and electromagnetic power brake are fully fixed on a particular stand follow 

by proper alignment. Figure 3.6 shows a general overview of the experimental test 
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rig which includes line start permanent magnet motor, powder break, and torque and 

speed sensor used in this research. 
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Figure 3.5: Illustration of experimental set up 

 

 
Figure 3.6: Experimental test rig 

 

3.3.1  Experimental Devices 

 

The machine test stand consists of a three-phase power supply, test machines and an 

electromagnetic power brake used as a load in this research. This section provides a 

full understanding and complete detailed descriptions of the devices used in current 

work.  

 

3.3.1.1  Electrical Panel 

 

The LS-PMSM is supplied through the three phase electrical panel. In the electrical 

panel, motor protection is used for over current protection and earth fault instrument 

is used for human protection. The electrical circuit for start and stop of motor is also 

designed and assembled. 
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3.3.1.2  LS-PMSMs  

 

The main characteristics of the tested motors are: Rated voltage: 415 V, Rated 

power: 750 W, 4 poles, primary Rated current: 1.2 A, Rated speed: 1500 rpm, Star 

connection, the number of stator slots: 24, the number of rotor bars: 16. The LS-

PMSM used in this research and its nameplate are shown in Figure 3.7. 

 

 
(a)                                                     (b) 

Figure 3.7: (a) LS-PMSM used in this research and (b) its nameplate 
 

The test motors include healthy motor and motor with one broken rotor bar. The 

broken rotor was simulated in this study by opening the motor and by drilling a hole 

in the bar as a common practice [219,220]. The drilled hole is 7 mm in Diameter 

with a depth of 9.4 mm which can separate the bar completely from end ring. Figure 

3.8 is a demonstration of a broken rotor bars made artificially in the laboratory using 

drill. 

 

 
Figure 3.8: Demonstration of the rotor with one broken bar 
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3.3.1.3  Electromagnetic Power Brake 

 

A mechanical load is set for experimental tests using an electromagnetic power 

brake. The electromagnetic power brake has three main components: stator, rotor and 

coil. When the brake is connected to the electricity supply, the magnetic field 

induced in the coil starts to fluctuate that depends on the ratio of current intensity. 

These fluctuations in magnetic field change the viscosity of magnetic powder 

between rotor and stator. The coil in brake, when receives electrical power, causes 

the particles line up along the force lines of the magnetic field, which bind the rotor 

and stator together, and produce friction that ensues braking. However, when the 

connection to electricity supply is ceased, a centrifugal force presses the powder 

against the stator and consequently the rotor is released that can rotate freely once 

more. There are some advantages of using electromagnetic power brake instead of 

conventional mechanical load such as generator for experimental test, such as:  

 Excellent slip capacity: operate in a constant slip mode 

 Fast response: voltage to torque is almost linear, so quick-response tension is 

extremely fast. 

 Accurate control: controllability of electromagnetic power brake is very 

accurate. 

 Stable torque: Torque does not depend on speed, but it is proportional to the 

voltage/current applied to the field 

 

The electromagnetic power brake depicted in Figure 3.9 is used in this research. The 

specification of electromagnetic power brake is described in Table 3.1. Model YSB-

2.5 is manufactured by Dongguan Weizheng Electromechanical Technology Co., 

Ltd. 

 

Table 3.1: Specification of YSB-2.5 

Parameters   Value 

Model  YSB-2.5 

Rated Torque (N.m)  25 

Power (W) 30 

Voltage (V-DC)   24 

Current (A)   1.24 

Moment of Inertia 3.810-3 

Weight (Kg) 9 

Maximum Speed (rpm)   1800 

 

No load condition is established via electromagnetic power brake at no-excitation 

and also different load levels are furnished upon adjusting the DC voltage at 

electromagnetic power brake terminals up to full load rate, which is 4.8 N.m. A 

special adjustable stand is designed for MPB in order to connect it properly with the 

object.  
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Figure 3.9: Electromagnetic Power Brake Model YSB-1.2 

 

3.3.1.5  Coupling 

 

The connections between electromagnetic power brake, tachometer and motor are 

made by a flexible Lovejoy coupling shown in Figure 3.10. The flexible shaft 

coupling compensates for shaft misalignment and damping of critical vibrations. It 

has other advantageous such as being variable, selectable damping, easy, plug-type 

assembly. 

 

 
Figure 310: Lovejoy coupling 

 

3.3.1.6  Measurement instruments 

 

This section provides a full understanding of the instruments used in current work. 

These include complete detailed descriptions of the measurement instruments and 

digital data acquisition system utilized here. 
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3.3.1.7  Current transducer 

 

The DAQ system used in this research allows for voltage measurements. For the case 

of current measurements, the LEM current transducer (LTS 25-NP) was chosen for 

these purposes. The LTS 25-NP current transducer is specially used for electronic 

measurement of AC and DC type currents, with a galvanic isolation between the 

primary circuit (high power) and the secondary circuit (electronic circuit), in 

applications such as adjustable speed drives, power converters, uninterruptible power 

supplies, and switched mode power supplies. This current transducer possesses the 

characteristics of excellent accuracy (± 0.7 %) and very good linearity (< 0.1 %). The 

LTS 25-NP series have ability of measuring currents up to 80 A for a maximum 

nominal current of 25 A, precisely. The output of this transducer is an analog output 

voltage signal that can be calculated from following formula: 

 

𝑉𝑜𝑢𝑡 = 2.5 ± (0.625 ×
𝐼𝑝

𝐼𝑝𝑛
)                                                 3.8 

where 𝐼𝑝𝑛: Primary nominal RMS current 6/15/25 At and 𝐼𝑝: Primary current, 

measuring range. 

 

In this research, three sets of LEM current transducer (LTS 25-NP) were used for 

measuring the three phases of current. At each test condition the currents were 

sampled simultaneously through three channels of a scope and stored directly on a 

personal computer. Figure 3.11illustrates the board consisting of three sets of LEM 

current transducer (LTS 25-NP). The specifications of current transducer are shown 

in Appendix D. 
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Figure 3.11: Demonstration of the current measurement circuit 

 

3.3.1.8  Torque sensor 

 

The model allows measuring the torque of continuous rotating object. The rated 

capacity of TRB-10K torque sensor, which the maximum axial load that can be 

measured by this model, is 10kgf-m (98.07N-m). The TRB-10K possess the 

characteristics of excellent accuracy, i.e., nonlinearity (0.3 % Rated Output) and 

hysteresis (0.2 % Rated Output). Rated output is the algebraic difference between the 

outputs at no-load and at rated load. Besides that, the ability of the TRB-10K to 
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reproduce output readings when the same load is applied to it consecutively, under 

the same conditions, and in the same direction is 0.3 % rated output. Figure 3.12 

shows the appearance of the torque sensor, Model TRB-10K and its indicator DN-

100. 

 

 
Figure 3.12: Torque sensor and its indicator 

 

3.3.1.9  Speed sensor 

 

A speed sensor, MODEL MP-981, measures speed of the motor. According to the 

catalogue provided by the manufacturer, this model is a magneto-type detector using 

a hall element, which is suitable for rpm measurement from ultra-low speed to high 

speeds. This type of detector uses an internal hall element, a permanent magnet, DC 

amplifier, and voltage regulator and respond to flux (i.e., the resistance value 

changes in respond to flux changes), then a rectangle waveform is derived from 

ultra-low speed all way through high speeds. Figure 3.13 shows the speed sensor, 

MODEL MP-981, used in this research. 

 

 
Figure 3.13: Demonstration of the magneto-type detector (MODEL MP-981) 
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3.3.1.10  The Data Acquisition System 

 

The high sampling rate and high resolution of the system allow the user to get precise 

and accurate data structures, which are extremely important especially in the areas of 

motor fault diagnostics. These features are very important because any extraneous 

information in the motor signals arising due to situations such as noises may yield a 

false indication of fault. Therefore, such a high quality system is recommended for 

fault diagnostic applications. The high accuracy and precision of the PC 

Oscilloscopes provided by Pico technology is used in this work. The PicoScope 4000 

Series of PC Oscilloscopes is a range of compact, high-resolution scope units 

designed to replace traditional bench-top oscilloscopes and it is a very attractive and 

reliable data collection tool. The  current  waveforms  of  three-phase  LSPMSM  at 

both healthy  and  faulty conditions are  captured  via  a  high  resolution computer-

based  acquisition system model PicoScope 4424. The configuration of PicoScope 

4424 is represented in Figure 3.14. This system is well suited for measuring various 

input range from small signals as well as higher range signals for general, scientific 

and field-service usages. The aforementioned system is USB-connected including an 

industry-leading signal  acquisition  path  that  provides  80  MS/s  ADC  on  each  

channel  with  1% accuracy. The PicoScope 4000 Series have input ranges from ±50 

mV to ±100 V full–scale (±50 mV to ±20 V for the PicoScope 4224 IEPE). 

Accordingly, it offers measuring of small signals from sensors as well as higher 

voltages from power supply circuits and motor drives. Having a 12–bit resolution 

(adjustable up to 16 bits in enhanced resolution mode) and accuracy of about 1% 

make them an excellent option for analysis of noise, vibration and mechanical. 

 

 
Figure 3.14: PicoScope 4424 

 

3.3.1.11  Voltage Probe 

 

A voltage differential probe is used to measure the voltage difference between two 

test points, where neither is at ground.  Due to their rejection capability, this probe is 

the best option for making non-ground referenced, floating or isolated measurements 

in large part. Voltage differential probe extends the functionality of standard single-

ended input oscilloscopes and allows a safe and accurate method of measurements 

for voltage difference. In this research, the stator current of LS-PMSM is measured 

utilizing current probe model TA041 manufactured by Pico Technology which is 

displayed in Figure 3.15.  
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Figure 3.15: Voltage differential probe model TA041 

 

3.3.2  PicoScope and MATLAB Software 

 

PicoScope 6 is the oscilloscope software supplied with all PicoScope® oscilloscopes. 

PicoScope 6 has a screen to display the signal properly and the most commonly used 

functions are available by just clicking a button. The best traditional way to control a 

bench-top oscilloscope was with knobs and dials. Pico Technology created PC-based 

oscilloscopes, in which there are no hardware to control the device itself and 

everything is controlled by the software instead. The software environment of 

PicoScope 6 is depicted in Figure 3.16. Since mouse or keyboard or touchscreen are 

the means of control and capture in a PC environment, the interface had undergone 

an evolutionary change. 

 

 
Figure 3.16: PicoScope 6 environment 
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Nowadays, MATLAB® environment is the fundamental tool for analyzing the 

simulated and measured data in almost all research. This software provides a flexible 

mode of introducing the data to be analyzed. It has a set of powerful functions that 

allow the signal analysis in the time, frequency and time-frequency domain. In this 

research work, MATLAB workspace has extensively been applied for signal 

analysis. The MATLAB® command line is used for analysis of the original signal in 

Time domain and Time-Frequency domain. Therefore, the M-file was written in 

MATLAB® workspace appended in Appendix E. 

 

3.4  Sampled Signals Procedure 

 

The signals can be divided into two types; stationary and non-stationary. In this 

study, the start-up signal of LS-PMSM is considered for feature extraction and this 

signal is non-stationary. In this study, four different levels of load have been applied 

to the electromagnetic power brake as: (0, 0.5, 1, and 1.5) Nm for both healthy and 

faulty conditions to study the effects of loads in fault identification procedure. To 

work on transient signal, a pre-processing is necessary in order to highlight the 

differences of signals obtained from healthy and faulty electrical motors. 

Accordingly, after signal measurement and before the analysis of signal a pre-

processing is necessary. The pre-processing step is the key factors for accurate signal 

analysis and to data measurement.  

 

Zero crossing and selecting an equal number of periods in the signal are important 

pre-processing techniques that should apply to transient signals before any analysis. 

If signal processing is implemented for the fault detection of electrical machine, the 

current signal is required to be synchronized first. Therefore, the acquired signal is 

first preprocessed by synchronizing the starting origin with phase 0. In order to have 

the same condition for data analysing, 40 periods in transient current signal, from 

zero starting point to steady state condition, are selected and then around 4000 

samples are given for each data set. Transient stator current signals are measured 

experimentally under four different load conditions. The waveforms of the signal that 

selected for processing are shown in Figure 3.17 for No-load condition. 

 

Selected part

 
Figure 3.17: The transient stator current signals that selected for processing 
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3.5  Signal Processing Procedure 

 

Raw signals acquired from measuring instruments and sensors, which measure a 

physical parameter over a period, always contain noises. Therefore, it is generally 

impractical to obtain meaningful information from a raw signal by just looking at it. 

A technique that suppresses the effects of noise and transforms the raw signal to a 

meaningful representation using computer algorithms is called signal processing. In 

this respects, a signal acquired from condition monitoring of an electrical motor 

needs to be analyzed using a signal processing method to extract fault-related 

features necessary to make decision. The synchronized signal is analyzed to extract 

the features related to broken rotor bar fault. Following sections present the 

procedure for time domain and time- frequency domain analysis of current signal for 

broken rotor bar detection. 

 

3.5.1  Time Domain Analysis 
  

Time-domain analysis helps to extract characteristic features from time waveform 

signals as descriptive statistics. In any fault diagnosis algorithm, extraction of 

characteristic feature from a signal is the key step, since the critical information for 

decision-making is obtained from this step and thus its accuracy directly influences 

the final monitoring results [221]. Han et al. compared the features obtained from 

time domain analysis of the steady state current signal and indicated the ability and 

efficiency of these features for detection of different faults [221]. 

 

Statistic features can be used to characterize the behavior alteration of a signal when 

any failure occurs in a device. The simplicity of features extraction from time 

waveform signals and their implementation accompanied with a low computational 

time make time domain analysis attractive for detection of failure in electrical 

devices [222]. In this research, time domain signal processing is used to analyze the 

signals acquired during start-up operation of motor. Analysis of a raw signal, time 

domain signal, can be used for extraction of features related to broken rotor bar. 

Statistical parameters use as a quick test for changes in the pattern of signals. 

Accordingly, a detector was developed based on statistic features of the acquired line 

current. In the following, two different algorithms for time domain analysis are 

discussed. 

 

3.5.1.1  Statistical feature in time domain 

 

The broken bars cause harmonic components 𝑓𝐿𝑆𝐻 = (1 − 2𝑠)𝑓 in the stator current 

as explained in chapter 2. During the startup, the slip of motor changes from a value 

to be equal to one at the beginning to a value to be equal to zero in steady state. 

Hence, the frequency of left sideband harmonic (𝑓𝐿𝑆𝐻) changes from the fundamental 

frequency to zero and again to the fundamental frequency. This left sideband 

harmonic is directly added to the signal. The measured signals obtained from the 

experiment were calculated to obtain the most significant features by feature 

calculation. The accuracy of feature calculation is of substantial importance since it 

directly affects the final diagnosis results. 
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Using different statistical features related to the fault increases the reliability of fault 

detection in the equipment. As the goal of this research was to find a suitable fault-

related feature for broken rotor bar detection through a statistical analysis, for each 

specified condition, 40 tests were executed. Measurement was performed for two 

healthy and faulty motors at 4 levels of load condition, and hence 320 data sets were 

obtained for each statistical features. In total, 4160 data are obtained from these 13 

features for two healthy and faulty motors. 

 

Characteristic features or feature parameters extracted from a raw signal in time 

domain include both dimensional and the non-dimensional statistical parameters. 

Examples of dimensional parameters are Mean, Root Mean Square (RMS), Root-

sum-of-squares level (RSS), Peak–Peak value, Energy, variance, standard deviation. 

Non-dimensional parameters are pulse index, waveform index (Shape Factor), 

impulsion index, peak index (Crest factor), tolerance index (Margin factor), 

skewness index, kurtosis index. These feature parameters are listed as below: 

 

A. Dimensional Parameters: 

1. Mean                     

𝑋𝑀𝑒𝑎𝑛 =
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖=1                                                  3.9 

2. RMS 

𝑋𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑋𝑖

2𝑁
𝑖=1                                               3.10 

3. RSS 

XRSS = √∑ |Xi
2|N

i=1                                               3.11 

4. Peak to peak value 

XPP = max(X) − min (X)                                   3.12 
5. Energy  

𝑋𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑋𝑖
2𝑁

𝑖=1                                             3.13 

B. Non-dimensional Parameters: 

1. Waveform index (Shape Factor) 

𝑋𝑊𝑖 =
𝑋𝑅𝑀𝑆

1

𝑁
∑ |𝑋𝑖|

𝑁
𝑖=1

⁄                                    3.14 

2. Impulsion index 

𝑋𝐼𝑖 = 𝑚𝑎𝑥|𝑋|
1

𝑁
∑ |𝑋𝑖|

𝑁
𝑖=1

⁄                                 3.15 

3. Peak index (Crest factor) 

𝑋𝑃𝑖 = 𝑚𝑎𝑥|𝑋|
𝑋𝑅𝑀𝑆

⁄                                        3.16 

4. Tolerance index (Margin factor) 

𝑋𝑇𝑖 = 𝑚𝑎𝑥|𝑋|/(
1

𝑁
∑ |𝑋𝑖|

1 2⁄ )𝑁
𝑖=1

2
                     3.17 

5. Peak-to-average power ratio 

𝑋𝑃𝐴 =
(𝑚𝑎𝑥 (𝑋))2

(𝑋𝑅𝑀𝑆)2⁄                             3.18 

6. Variance                                                      

𝑋𝑉𝑎 =
1

𝑁−1
∑ |𝑋𝑖 − 𝑋𝑀𝑒𝑎𝑛|2𝑁

𝑖=1                          3.19 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAAahUKEwi3o9rzl-XGAhVHBo4KHYIEBzo&url=http%3A%2F%2Fwww.mathworks.com%2Fhelp%2Fsignal%2Fref%2Frssq.html&ei=aIqqVbfPNMeMuASCiZzQAw&usg=AFQjCNEoBbYy1RK2ijGUVBdndlzE7725lA&sig2=viLn8HnQekKPUhiN4edJbw&bvm=bv.98197061,d.c2E
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAAahUKEwi3o9rzl-XGAhVHBo4KHYIEBzo&url=http%3A%2F%2Fwww.mathworks.com%2Fhelp%2Fsignal%2Fref%2Frssq.html&ei=aIqqVbfPNMeMuASCiZzQAw&usg=AFQjCNEoBbYy1RK2ijGUVBdndlzE7725lA&sig2=viLn8HnQekKPUhiN4edJbw&bvm=bv.98197061,d.c2E
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7. Skewness index 

𝑋𝑆𝑖 =
1

𝑁
∑

(𝑋−𝑋𝑀𝑒𝑎𝑛)
3

𝜎3
𝑁
𝑖=1                                    3.20 

8. Kurtosis index 

𝑋𝐾𝑖 =
1

𝑁
∑

(𝑋−𝑋𝑀𝑒𝑎𝑛)
4

𝜎4
𝑁
𝑖=1                                    3.21 

 

Where X is a signal, N is number of sampled data points of signal, and σ is standard 

deviation that is calculated from 

 

σ = √
1

N
∑ (X − XMean)2N

i=1                                               3.22 

 

3.5.1.2  Statistical feature in envelop time domain  

 

The instantaneous magnitude of the stator current (or current modulation) can be 

used as indication of fault in electrical machine [142]. Due to fault occurrence, like 

broken bar, the modulation of the stator current, called envelope, is generated in 

amplitude of the stator currents.  The envelope is cyclically repeated at a frequency 

equals to twice the slip frequency 2𝑠𝑓 [223,224].  

 

The nature of rotating magnetic field in a healthy motor is an ideal periodical profile 

over a two-pole pitch that leads to a circular sketch of the space vector for magnetic 

field. When a bar in the rotor breaks, no induced current can flow in it and thus the 

ideal periodical profile is missed over the two pole pitches of the rotor [225]. As a 

result, the neutral plane orientation of magnetic field in faulty rotor deviates from its 

position in a healthy motor, and thus an angular shifting is generated in the waveform 

of magneto motive force for rotor. This angular shifting changes in a cyclical manner 

depending upon the number of broken bars and its geometric distribution around the 

rotor [225]. Alteration in orientation of the magnetic field, which results local 

saturation in the rotor laminations around the broken bars, leads the space vector of 

magnetic field becomes quasi-elliptical and modulate the stator current in sequence 

[142]. 

 

In this part, envelope is used as a feature (or fault characteristic) for diagnosis of 

broken rotor bar in LS-PMSM. The first step of the proposed approach is to extract 

the analytic signal from one phase current signal by applying the Hilbert transform to 

the current signal. The Hilbert transform is defined as a convolution between the 

original signal and the function 1/πt. Considering a real time current signal 𝑖(𝑡), 

Hilbert transform for this signal, 𝐻(𝑖(𝑡)), is expressed as [145]: 

 

𝐻(𝑖(𝑡)) = 𝑖(𝑡) ∗
1

𝜋𝑡
=

1

𝜋
∫

𝑥(𝜏)

𝑡−𝜏
𝑑𝜏

∞

−∞
                               3.23 

 

The Fourier Transform of the function (1/πt) is defined as:  
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F (
1

πt
) = {

−j    if    f > 0
j       if    f < 0

                                              3.24 

Where 𝑓 is the frequency in Hertz. 

 

Equation (3, 24) relies on positive frequencies in the i(t) spectrum that are shifted by 

–90◦ and the negative frequencies shifted by 90◦. Depending on the frequency sign of 

input signal, Hilbert transform can then be applied as a filter of amplitude unity and 

phase ±90◦. A new complex signal, called analytic signal, Z(t), is created using 

adding a real signal 𝑖(𝑡) and its Hilbert transform defined as Equation (3.25): 

If    𝑦(𝑡)= 𝐻(𝑖(𝑡)) 

𝑍(𝑡) = 𝑖(𝑡) + 𝑗𝑦(𝑡)                                                      3.25 

 

The signal 𝑍(𝑡) filters all the negative frequencies of𝑖(𝑡). The analytic signal 

𝑍(𝑡)also can be defined as  

𝑍(𝑡) = 𝑎(𝑡)𝑒𝑗𝜃(𝑡)                                                         3.26 

 

Where 𝑎(𝑡) and 𝜃(𝑡) are the instantaneous amplitude and the phase of 𝑍(𝑡), 

respectively. These parameters can be computed as follows.  

 

𝑎(𝑡) = √𝑖2(𝑡) + 𝑦2(𝑡)                                                    3.27 

𝜃(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑦(𝑡)/𝑖(𝑡))                                             3.28 

 

When the analytic signal is obtained using Equation (3.25) or (3.26), the envelope of 

this complex, defined as the absolute value of the signal, is comprised using Equation 

(3.29). 

𝐸(𝑡) = |𝑍(𝑡)| = |𝑖(𝑡) + 𝑗𝑦(𝑡)| = 𝑎(𝑡)                                   3.29 

 

Due to the above explanation, the same procedure was followed for extracting the 

envelops of measured signals. The envelopes of startup current signals were 

extracted by the Hilbert transform using MATLAB software. Figure 3.18 shows the 

current signal and envelope on it in no load condition for both healthy and faulty 

machine. 

 

 

Figure 3.18: The transient current signal and its envelope 

a) healthy motor, b) faulty motor 
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The next step includes analyzing the envelop signal to extract the statistical feature 

from it. These parameters used are described in section 3.5.1.1. Using different 

statistical features related to the fault increases the reliability of fault detection in the 

equipment. As the goal of this part was to find a suitable fault-related feature for 

broken rotor bar detection through a statistical analysis using transint envelop signal. 

For each specified condition, 40 tests were executed. Measurement was performed 

for two motors (healthy and faulty) at 4 levels of load condition, and hence 320 data 

sets were obtained for each statistical features. In total, 4160 data are obtained from 

these 13 features for two motors (healthy and faulty). 

 

3.5.2  Time-Frequency Analysis 

 

In order to overcome the problem of non-stationary signals, time-frequency analysis, 

consists of the time, frequency, and amplitude representation of a signal, has been 

proposed. There are many time-frequency tools that have satisfactorily been applied 

for the diagnosis of different motor faults. In qualitative terms, time-frequency 

transforms can be divided into two main types: discrete and continuous. Each of 

these groups has its own characteristics and advantages for the diagnosis [226]. 

Continuous like: Short Time Fourier Transform (STFT) or the Continuous Wavelet 

Transform (CWT) and Wigner-Ville Distribution (WVD) 

 more complete representation of the fault components evolutions, 

 enable the diagnostic based on more harmonic: higher reliability, 

 enable the discrimination among failures and between failures and other 

phenomena, and 

 suitable for off-line diagnosis. 

Discrete like: Discrete Wavelet Transform (DWT) 

 simple, 

 usually with lower computational burden, 

 facilitate the quantification of the fault severity, and 

 suitable for on-line diagnostic systems 

In this study, Discrete Wavelet Transform is used as a time-frequency domain 

analysis. 

 

Wavelet Transform is an effective signal processing which has been found to be 

successfully useful in area of analysing non-stationery signal to describe aperiodic, 

intermittent, noisy, and transient and so on. Wavelet Transform is the transform of a 

signal from time domain to time-frequency domain and has the ability to look at the 

signal simultaneously in time and frequency domain in a distinctly different from 

other traditional time-frequency domain transform. The resolution problem of the 

STFT is also solved by using Wavelet Transform. 

 

Wavelet analysis of a waveform signal expresses the signal in a series of oscillatory 

functions with different frequencies at different time. It divides the signal into time-

scale space and the size of the window at time and frequency (scale) is not rigid 
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[172]. Figure 3.19 illustrate the principle of Time–Frequency resolution for wavelet 

transform and STFT approach. 

 

f f

f  > f0

f < f0

f0

f0/a

f0/a

f0

 
Figure 3.19: Illustration of the principle of Time–Frequency resolution for 

wavelet transform and STFT approach 

 

A wavelet is a waveform of effectively limited duration that has an average value of 

zero. Wavelet transform refers to a mathematical processing to transform a raw 

signal f(t) to a signal in term of shifted and dilated version of singular function, 

called mother wavelet 𝛹(𝑡) (analyzing wavelet). A function called family wavelet is 

defined as [173] : 

𝛹𝑎,𝜏(𝑡) =
1

√𝑎
𝛹(

𝑡−𝜏

𝑎
)                                              3.30 

 

where𝑎 is wavelet scale, 𝜏 is the wavelet position (time parameter, shifting). Scaling 

and a wavelet means compressing or stretching the wavelet, while shifting a wavelet 

means hastening or delaying its onset. Delaying a function 𝑓(𝑡) by 𝜏 is 

mathematically represented by 𝑓(𝑡 − 𝜏). Figure 3.17 also illustrates the principle of 

wavelet transform, scaling and shifting of a signal.   

 

In Discrete Wavelet Transform, the scale 𝑎 and the time 𝜏are described as follow: 

𝑎 = 𝑎0
𝑚 and  𝜏 = 𝑛𝑎0

𝑚𝜏0 , where m and n are integers. Accordingly, discretized 

family wavelet is defined as: 
 

𝛹𝑚,𝑛(𝑡) = 𝑎
0

−𝑚
2⁄
𝛹(𝑎0

−𝑚𝑡 − 𝑛𝜏0)                                      3.31 

 

The discrete wavelet transform of the signal 𝑓(𝑡) is defined by  

 

𝐷𝑊𝑇𝛹𝑓(𝑚, 𝑛) = ∫ 𝑓(𝑡)
∞

−∞
𝛹𝑚,𝑛

∗ (𝑡)                                   3.32 
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The resolution of the signal, which is a measure of the amount of detailed 

information in the signal, is changed by the filtering operations, and the scale is 

changed by down sampling operations. The procedure starts with passing the signal 

𝑓(𝑡) with the length 𝑁 through a half- band digital low pass filter with impulse 

response 𝑔[𝑛] and a half band digital high pass filter with impulse response ℎ[𝑛]. 
The low-pass filter is called scaling filter, while high-pass filter is referred as wavelet 

filters. The output of these filters consists of 𝑁 wavelet coefficients. The outputs 

from the low-pass filter are the approximation coefficients at the first level of 

resolution. The outputs from the high-pass filter are the detail coefficients at the first 

level of resolution. The coefficients produced from wavelet analysis however are 

different depending on the wavelet family selected. This constitutes first level of 

decomposition, and can mathematically be expressed as: 

 

𝐴𝑛
1 = ∑ 𝑔[𝑘]𝑓[𝑡 − 𝑘]𝑁−1

𝑘=0                                        3.33 

𝐷𝑛
1 = ∑ ℎ[𝑘]𝑓[𝑡 − 𝑘]𝑁−1

𝑘=0                                        3.34 

 

The approximation coefficients at the first level of resolution are used as inputs for 

another pair of wavelet filters (identical with the first pair). Therefore, sets of 

approximations and detail coefficients of length 𝑁/2  are generated at the second 

level of resolution [227]. For second level of decomposition, the approximation and 

detail coefficients can mathematically be expressed as: 

 

𝐴𝑛
2 = ∑ 𝑔[𝑘]𝐴𝑛

1 [2𝑡 − 𝑘]
𝑁/2−1
𝑘=0                                        3.35 

𝐷𝑛
2 = ∑ ℎ[𝑘]𝐷𝑛

1[2𝑡 − 𝑘]
𝑁/2−1
𝑘=0                                        3.36 

 

In [173], Mallat introduced a practical version of discrete wavelet transform, called 

wavelet multi-resolution analysis. This algorithm is based on the fact that, one signal 

is decomposed into a series of small waves belonging to a wavelet family. The multi-

resolution analysis commonly uses discrete dyadic wavelet, in which scales and 

positions are based on powers of two. The multi-resolution analysis extracts 

approximations and details of the original signal at different levels of resolution. An 

approximation is a low resolution representation of the original signal. The detail 

represents the high frequency contents of the signal. The approximations and details 

can be determined using low and high pass filters. In the multi-resolution analysis, 

the approximations are split successively, while the details are never analysed 

further. A discrete signal 𝑓[𝑡] could be decomposed as: 

 

 𝑓[𝑡] = ∑ 𝐴𝑚0,𝑛∅𝑚0,𝑛[𝑡]𝑘 + ∑ ∑ 𝐷𝑚,𝑛𝜓𝑚,𝑛[𝑡]𝑛
𝑚−1
𝑚=𝑚0

                      3.37 

 

where ∅ is the scaling functions, deduced by father wavelet and 𝜓 is the wavelet 

functions, deduced by mother wavelet, 𝐴 is approximate coefficients and 𝐷 is detail 

coefficients.In this approach, the scaling function is represented by the following 

mathematical expression: 

 𝜙𝑚0,𝑛[𝑡] = 2𝑚0 2⁄ 𝜙(2𝑚0𝑡 − 𝑛)                               3.38 

 

i.e. 𝜙𝑚0,𝑛 is the scaling function at a scale of 2𝑚0 shifted by n. Wavelet function is 

also defined as 
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 𝜓𝑚,𝑛[𝑡] = 2𝑚 2⁄ 𝜓(2𝑚𝑡 − 𝑛)                                   3.39 

 

i.e. 𝜓𝑚,𝑛 is the mother wavelet at a scale of 2𝑚 shifted by n. 

 

Generally, approximate coefficients 𝐴𝑚0,𝑛 are obtained through the inner product of 

the original signal and the scaling function.  

 

𝐴𝑚0,𝑛 = ∫ 𝑓(𝑡)
∞

−∞
𝜙𝑚0,𝑛(𝑡)𝑑𝑡                                 3.40 

 

The approximate coefficients decomposed from a discretized signal can be expressed 

as 

𝐴(𝑚+1),𝑛 = ∑ 𝐴𝑚,𝑛
𝑁
𝑛=0 ∫ 𝜙𝑚,𝑛(𝑡)𝜙𝑚+1,𝑛(𝑡)𝑑𝑡 = ∑ 𝐴𝑚,𝑛 . 𝑔[𝑛]                  3.41 

 

In dyadic approach, the approximation coefficients 𝐴𝑚0,𝑛 are at a scale of 2𝑚0. The 

filter 𝑔[𝑛] is a low-pass filter. Similarly, the detail coefficients 𝐷𝑚,𝑛 can generally be 

obtained through the inner product of the signal and the complex conjugate of the 

wavelet function. 

𝐷𝑚,𝑛 = ∫ 𝑓(𝑡)
∞

−∞
. 𝜓𝑚,𝑛

∗ (𝑡)𝑑𝑡                                   3.42 

 

The detail coefficients decomposed from a discretized signal can be expressed as 

 

 𝐷(𝑚+1),𝑛 = ∑ 𝐴𝑚,𝑛
𝑁
𝑛=0 ∫ 𝜙𝑚,𝑛(𝑡). 𝜓𝑚+1,𝑛(𝑡)𝑑𝑡 = ∑ 𝐴𝑚,𝑛 . ℎ[𝑛]             3.43 

 

In dyadic approach, 𝐷𝑚,𝑛 are the detail coefficients at a scale of 2𝑚0. The filter ℎ[𝑛] 
is a high-pass filter. It is significant to note that the wavelet coefficients are directly 

dependent on the shape of the wavelet function. 

The decomposition process can be iterated, with successive approximations being 

decomposed in turn, hence one signal is broken down into many lower resolution 

components. This process is called the wavelet decomposition tree. Figure 3.20 

illustrates the dyadic wavelet decomposition algorithm regarding the coefficients of 

the transform at the different levels. 
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Figure 3.20: Dyadic Wavelet Decomposition Algorithm 

 

In wavelet analysis, an appropriate wavelet function has to be selected to perform the 

best signal decomposition. However, the results produced are unique to the selected 

wavelet function, because their ability at encoding, de-noising, compressing, 

decomposing and reconstructing of the signal is different. The types of wavelet 

function for fault diagnosis purpose have been chosen by user’s decision so far. It is 

therefore desirable to select a wavelet function that produces the best results for the 

signal being analyzed and prevent to misleading diagnosis. Accordingly, the 

selections of best wavelet functions with different order are essential. In this 

research, 102 wavelet functions have been chosen for examination of incipient 

broken rotor bar detection to find the best wavelet functions. Table 3.2 shows the 

wavelet functions that are used in this research. 

 

Wavelet transform provides a set of decomposed signals in independent frequency 

bands, which depends on level of decomposition. In other words, each level of 

decomposition provides a signal of a certain frequency band and the levels of 

resolution determine the resolution of a signal in terms of its time and frequency. 

Therefore, to obtain a signal that encompasses frequencies of interest, the level of 

decomposition should be determined first. 
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Table 3.2: Wavelet functions 

Wavelet Functions Wavelet order 

Haar  'haar' 

Daubechies  'db1', 'db2', ... ,'db10', ... , 'db45' 

Coiflets  'coif1', ... , 'coif5' 

Symlets  'sym2', ... , 'sym8', ... ,'sym20' 

Discrete Meyer  'dmey' 

Biorthogonal  'bior1.1',…,'bior6.8' 

Reverse Biorthogonal  'rbio1.1',…,'rbio6.8' 

 

Depends on the type of application, a signal may contain high frequency with low 

time resolution or low frequency with high time resolution. The optimum number for 

levels of resolution is the minimum number of levels that the decomposed  signal  

can  be  reconstructed  to  the  original  form  without  any  loss  of information. If 

the 𝑓𝑠 is the sampling frequency used to capture the signal, then the interval 

frequency for the detail space𝐷𝑚 and approximation space 𝐴𝑚 are extracted from 

these equations: 

 

𝑓(𝐷𝑚) ∈ [2−(𝑚+1)𝑓𝑠, 2−𝑚𝑓𝑠]𝐻𝑧                                    3.44 

𝑓(𝐴𝑚) ∈ [0, 2−(𝑚+1)𝑓𝑠]𝐻𝑧                                            3.45 

 

Therefore, discrete wavelet transform carries out the filtering process like shown in 

Figure 3.21. 
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Figure 3.21: Filtering Process 

 

The sampling frequency used for capturing the data in this research is 5000 

samples/second. To determine the appropriate level of decomposition, the original 

signal of motor current was first decomposed into 7 levels. Each level has its own 

range of frequencies. Tables 3.3 present the frequency ranges corresponding to each 

level. It is clear that the fundamental frequency is located in the frequency range 

corresponding to detail 6.  
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Table 3.3: Frequency ranges for wavelet decomposition of signal 

Decomposition 

Level 

Frequency ranges (Hz) 

Detail  Approximation 

level 1 2500-1250 1250-0 

level 2 1250-625 625-0 

level 3 625-312.5 312.5-0 

level 4 312,5-156,2 156,2-0 

level 5 156.25-78.12 78.12-0 

level 6 78.12-39.06 39.06-0 

level 7 39.06-19.53 19.53-0 

 

As explained in chapter 2, broken bars cause harmonic components (1 − 2𝑘𝑠)𝑓 in 

the stator current. Among these components, the main one corresponds to the 

frequency that has k to be equal to 2, called left sideband harmonic and defined as: 

 

𝑓𝐿𝑆𝐻 = (1 − 2𝑠)𝑓                                            3.46 

 

During the startup, the slip of motor changes from a value to be equal to one at the 

beginning to a value to be equal to zero in steady state. Hence, the frequency of left 

sideband harmonic (𝑓𝐿𝑆𝐻) changes from the fundamental frequency to zero and again 

to the fundamental frequency. The appearance of this harmonic and its particular 

evolution was also explained in [36]. The behavior of left sideband harmonic 

frequency during the start-up transient is shown in Figure 3.22. 
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Figure 3.22: Behavior 𝒇𝑳𝑺𝑯 during the start-up 
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Ideally, the frequency of the left sideband harmonic (𝑓𝐿𝑆𝐻) varies from the frequency 

of stator supply to zero and it returns near the frequency of supply again (Figure 

3.20). The main idea underlying this alternative methodology is tracking the 

characteristics transient evolution of the fault related feature to the left side harmonic 

frequency comes from [228].  A qualitative pattern rising in high decomposition 

level of the signals shows a good indicator for the fault detection as shown in Figure 

3.23. Hence, the reconstructed signal that comes from the detail and approximation 

of level 7 and also approximation of level 6 are used as an input signal for 

calculating the fault related feature. The relevant frequency bands of D7, A7 and A6 

are shown in Table 3.3. 
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Figure 3.23: Theoretical behavior of 𝐟𝐋𝐒𝐇 as a function of slip. 

 

The applicability of using wavelet transform analysis for electrical motor health 

monitoring and fault diagnosis is based on the existence of some sensitive bands in 

the monitored signals which reflects the machine’s healthy or faulty status. 

Accordingly, the features are evaluated in this research for monitoring of broken 

rotor bar fault in LS-PMSM. The features used in this research are Log energy 

Entropy and Shannon Entropy. These features are common concept in many fields, 

mainly in wavelet transform signal processing and listed as bellow: 

 

1. Entropy “Shannon” 

𝑋𝐸𝑆ℎ𝑎𝑛𝑛𝑜𝑛 = − ∑ 𝑋𝑛
2 log 𝑋𝑛

2
𝑖                                     3.47 

with the convention (0log(0) = 0) 

2. Entropy “Log energy” 

𝑋ELog energy = ∑ log(𝑋𝑛
2)𝑖                                      3.48 

with the convention (log(0) = 0) 

where, 𝑋𝑛 is the reconstructed signal from level n. 
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Wavelet analysis of the current signal was performed using Wavelet Toolbox™ in 

MATLAB environment and the M-file was written in MATLAB® workspace 

appended in Appendix E. 

 

3.6  Statistical Analysis 

 

General analysis used statistical methods like boxplots and analysis of variance 

(ANOVA) to analyse the data obtained from experimental study. After calculation of 

features, the methods should be used for exploratory data analysis. Various methods 

used for visualizing the distribution shape in exploratory data analysis for better 

understanding of general characteristics of the data. The evaluation of statistical 

significance of differences was tested with two-way ANOVA, and Tukey's honest 

significant differences method was also used for multiple comparisons after 

ANOVA. 

 

Checking the assumption of normality, can be used by boxplot for a visual check of 

normality for multi-level experiments by listing all data with a multiplier. Boxplot 

(box-and-whisker diagrams) is one of the popular methods used [229]. Boxplots are 

an excellent and useful visual tool to visualize the summary statistics, which is used 

to compare means and variability between different data distributed and to 

supplement multivariate displays with univariate information.  Boxplots are used in 

this research to analyse and compare different features of parameter. The boxplots 

for this study visualize two different motor situations as healthy and faulty and in 

each situation four different levels of starting load are considered. As above-

mentioned, the motor was tested in all starting load conditions, from no load to full 

load, in each group of tests. 

 

In statistics, analysis of variance (ANOVA) involves a collection of statistical 

models to test differences between two or more means and their associated 

procedures. The difference in a particular variable is then partitioned into 

components attributable to different sources of variation.  ANOVA, in the simplest 

form, provides a statistical test of whether or not the means of several groups are all 

equal [230].  ANOVA tests the hypothesis that explains as Null hypothesis: the mean 

of groups for all condition is equal and Alternative hypothesis: at least the mean of 

one group is different from the others. The purpose of two-way ANOVA is to find 

out whether data from several groups have a common mean. The significance level is 

performed as 0.05. Here, for decision making survey a platform is designed, that 

means which features can be used for detection of fault in LS-PMSM. In this 

analysis, the statistical features are taken as continuous response variables 

(dependent variable) and “machine condition (healthy and faulty)” and “load 

condition” as categorical explanatory variables (independent variables). 

 

When more than one variable is compared across groups, two-way ANOVA 

followed by post-hoc, Tukey’s honest significant differences method is used. In this 

procedure, the significant differences detected by ANOVA are further investigated 

using a Tukey’s honest significant differences post-hoc test. Tukey’s honest 
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significant differences method provides a multiple testing by comparing the mean 

values [231]. In this study, Tukey’s method was implemented as post-hoc testing 

procedure to perform a statistical comparison for the mean values of each feature at 

four different load conditions. The mean values were compared using Tukey’s honest 

significant differences test at P ≤ 0.05.   

 

ANOVA analyses of the results were performed using Statistical Toolbox™ in 

MATLAB environment and the M-file was written in MATLAB® workspace 

appended in Appendix E. 

 

3.7  Summary 

 

This chapter presents simulation and an experimental setup to evaluate the broken 

rotor bar fault in three-phase LS-PMSM. An experimental setup is designed and 

implemented for both healthy motor and faulty motor in identical condition under 

different levels of load. The experimental procedure and configuration are presented 

subsequently. The rotor bar breakage was forced in the laboratory by opening the 

motors and drilling the bar artificially. Condition monitoring and data collection 

setup for sampling the stator current of motor is presented. Experimental data 

including current, torque and speed were acquired in equal condition. Torque and 

speed were also measured that are used for checking the motor condition to be 

identical in each test. Additionally, the case study motor is modeled based on FEM 

using Maxwell 2-D software for evaluation of the related parameters. The modeling 

study is introduced for both healthy and broken rotor bar fault conditions. Finally, the 

signal processing methods are used for identification of fault features in this type of 

electrical motors and were implemented using MATLAB software.  Experimental 

and simulation results are used to explain tests phenomena and to support the 

effectiveness of proposed scheme which are presented in the following chapter.   
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1  Introduction 

 

This chapter presents two aims of this research; first the effects of broken rotor bar 

fault on the motor performance under different levels of load and second extracting 

the fault related features for broken rotor bar detection in LS-PMSM. The results are 

studied both in experimental and simulation (motor modeling) with the effect of 

starting load. 

 

4.2  Performance of LS-PMSM with presence of faults 

 

In this section, the effects of broken rotor bar on the performance of motor during 

starting time are investigated. In the first step, the simulation result was used to 

analyze the performance of a healthy motor and also a motor with one broken bar 

under different levels of load. In the second step, the experimental result was used to 

confirm the effect of fault on machine performance. 

 

4.2.1  Simulation Result 

 

In this part, FEM is applied to investigate the performance of LS-PMSM when 

any broken rotor bar exists. The waveform of magnetic field contains comprehensive 

information about the stator and mechanical parts of the motor. Figure 4.1(a) shows 

the symmetrical distribution of magnetic flux in the healthy motor and Figure 4.1(b) 

presents the asymmetrical distribution of magnetic flux in a motor with one broken 

rotor bar under 1.5Nm starting torque. Furthermore, distribution of the flux lines 

around the broken bars differs from healthy bars. Comparing the Figures 4.1(a) and 

4.1(b) shows density increasing of magnetic flux in the rotor core around broken bar, 

stator core, and the air gap. The concentration of magnetic flux observed around the 

broken bar creates asymmetric distribution of magnetic flux in this area. When a bar 

breaks, its current is distributed in the adjacent bars that mean more current flows in 

them. The excess current makes saturation and generates more heat in adjacent bars 

that result in asymmetrical distribution of magnetic flux. The generated heat makes 

the situation of adjacent bars worse and then makes a problem for permanent magnet 

because of the proximity of the cages to the magnets. Both the residual flux density 

and coercivity of permanent magnets reduce as a function of temperature. 

 

According to Faraday’s law, an electromagnetic field will be induced in the cage 

because of magnetic field fluctuating. The electromagnetic field will then generate a 

current through the cage and the situation becomes as a current carrying loop is 

situated in a magnetic field. According to Lorentz law, a magnetic force is produced 
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in the cage that causes the cage starts to rotate. Figure 4.2 shows the simple 

procedure of this function. 

   

Healthy

(a)

 

       
Faulty

Broken Rotor Bar 

Concentration of Magnetic Flux(b)

 
Figure 4.1: (a) The magnetic flux line in healthy motor, (b) the magnetic flux 

line in the motor with broken rotor bar. 
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Winding

Squirrel Cage Bar

 
Figure 4.2: Rotating Magnetic Field produces a Force on Squirrel Cage Rotor 

 

Magnetic force in a healthy rotor is symmetrically distributed around the rotor. A 

magnetic asymmetry due to the broken rotor bar introduces an unbalanced magnetic 

force. For both healthy motor and motor with broken rotor bar, the magnetic force 

distributions on the rotor bar at start-up (0 Nm) are computed by the FEM method. 

The results shown in the Figure 4.3 reveals that the amplitude of magnetic force for 

faulty motor is higher than for healthy motor. Such non-uniform distribution of the 

force inevitably leads to excessive mechanical stress in the bars, and the bars would 

become more susceptible to additional wearing and eventual breaking. 

 

 
Figure 4.3: Magnetic Force in Starting Torque (a) Healthy and (b) Faulty Motor 
 

The squirrel cage bars in the rotor can provide the accelerating torque that drives the 

machine to near synchronous speed. The accelerating torque must overcome not only 

the applied load torque but also the generated magnet braking torques, which is due 

to the presence of the permanent magnet. When broken rotor bar happens, the torque 

characteristics of the motor also change. Figure 4.4 shows the comparison of healthy 

and faulty motor under maximum starting torque. As it is clear, the motor with one 

broken rotor bar cannot run at starting torque value of “2.3Nm”, which the motor 

design is for it and the starting torque value decreases to near 1.75Nm. Accordingly, 

the value of starting torque is decreased whenever there is a broken rotor bar in LS-

PMSM, while this phenomenon has not been reported for induction machine. As 
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presence of broken rotor bar change the torque characteristic of the LS-PMSM, early 

detection of this fault is very important. 

 

Based on the Equation 2.3, the starting torque of the machine is also directly related 

to the cage resistance (R2
′ ). In the presence of BRB fault, the value of cage resistance 

is increases. This value affects by reducing the value of cage torque. Thus, detection 

of BRB in early stage is important to keep the startup torque of the machine in the 

design value as well as to prevent the machine from secondary failure.  

 

 
Figure 4.4: The Comparison of Maximum Starting Torque [2.3 Nm] for (a) 

Healthy and (b) Faulty Motor. 

 

Another issue found during the simulation analysis is increasing of time duration for 

transient section when any bar is broken. Figure 4.5 shows the current signal in 

different load condition for both healthy and faulty motors. As it is clear in this 

Figure 4.5, with the presence of fault in the motor, starting time is increased. Figure 

4.6 illustrates the starting time for both healthy and faulty motor under different 

levels of the load. As it is clear, the starting time trend is also increased based on 

increasing the load. A recent research conducted on induction machine revealed that 

the load condition of motor is not important when approaches based on the transient 

analysis are used [232]. Other researchers also did not consider the effects of load for 

fault detection in induction machine based on analysis of current in transient state 

[233,234]. However, this research indicates that the load effect in the starting time 

should be carefully taken into account for fault detection in LS-PMSM.  

 

For LS-PMSM that start with squirrel cage, the application of the technique is even 

more justified, because these elements only carry significant currents during those 

transients. This is the fact that makes the application of conventional diagnosis based 

on steady-state impractical. Presence of broken rotor bars in the LS-PMSM causes 

changes in the air gap flux and the current distribution among the rotor bars during 

acceleration from standstill to rated speed. This part indicated that the broken rotor 

bars slightly change the performance of motor during startup. This situation is critical 

for broken rotor bars fault detection in this motor during transient time. 
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Figure 4.5: Simulation current signal in four-load condition for 

healthy and faulty motor 

 

 
Figure 4.6: Comparison the result of starting time for different loads 

 

4.2.2  Experimental Result 

 

The effect of broken rotor bar in starting torque is also observed experimentally. It is 

found that, the motor with one broken rotor bar cannot run at starting torque value of 

“2.3Nm”, which the motor design is for it and the starting torque value decreases to 

near 1.70Nm. The rate of torque variations for the faulty motor is higher than for the 

healthy one, so higher noise accompanied with lower performance are expected from 

the faulty motor.  

The time duration for transient section is also determined through experimental 

work. Figure 4.7 shows the current signal in different load condition for both healthy 

and faulty motors. As it is clear in this figure, with the presence of broken rotor bar, 

the duration of starting time is increased. Figure 4.8 provides comparison between 
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starting time for both healthy and faulty motors in different level of the load. The 

results presented in Figure 4.8 are based on mean of 40 samples for each condition. 

 

 

 

End of Transient 

Time
Faulty

Healthy

End of 

Transient 

Time

Faulty

Healthy

End of Transient Time
Faulty
Healthy

End of Transient Time
Faulty
Healthy

 
Figure 4.7: Experimental current signal in four-load condition for 

Healthy and Faulty motor 

 

 
Figure 4.8: Comparison the result of starting time in different load based on the 

mean value of 40 Samples for each load 

 

4.3  Data Processing for Fault Detection 

 

The signals can be divided into two types; stationary and non-stationary. In this 

study, the start-up signal of LS-PMSM is considered for feature extraction and this 

signal is non-stationary. Transient stator current signals are measured experimentally 
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under four different load conditions. Two different type of signal processing method 

used in this study (Time domain and Time-frequency domain analysis).  

 

4.3.1  Time Domain Analysis 

 

After pre-processing, a time domain analysis is applied to the acquired signal in 

order to extract the features related to the fault. Two different methods are used to 

identify the features related to the fault under observation, broken rotor bar. The first 

one is analysis of raw time domain signal and the second one is analysis of the 

envelope of the raw signal in time domain. 

 

4.3.1.1  Time Domain Analysis based on Raw Signal 

 

In this section, 13 statistical parameters are calculated and used to extract the features 

in time domain signal for broken rotor bar detection as mentioned in the section 

3.5.1.1. In total, 4160 data are obtained from these 13 parameters for two motors 

(healthy and faulty) that run at four different levels of load and 40 measurements are 

performed for each condition.  

 

Traditional statistical features can characterize the behavior change of signals when 

any fault occurs or load condition is changed. Different researchers have used 

different types and numbers of statistical features to extract the faults in electrical 

machines. Therefore, to testify which features are more accurate and reliable for fault 

detection, this study surveys the trend of these features in different load conditions. 

The distances between different conditions can indicate the efficiency of the features. 

If the trend of a feature for healthy and faulty motor does not overlap with each 

other, this feature is appropriate for fault detection. In this respect, trend of different 

features and their boxplots are used to compare the values of any feature for healthy 

and faulty motors in different load conditions. In trend and boxplots graphs, the x-

axis legend is based on the starting load. Figure 4.9 and Figure 4.10 show the trend 

and boxplot graphs for dimensional parameters and non-dimensional parameters, 

used as fault feature, respectively. Analysis of these figures will lead to several 

interesting conclusions. The  most  obvious  one  is  the  results  are  not  similar  for 

all cases and each case should be studied and analyzed separately.  

 

The trend graphs for dimensional parameters show no overlap exists between the 

healthy and faulty situation at any levels of starting load. However, when a boxplot 

for these features are considered, there is some antithesis. As Figure 4.9 (d) shows, 

where the Peak to Peak feature is used, there is an overlapping between boxes 

corresponding to the condition that cannot be understandable from the trend graph. In 

Figure 4.9 (b,c and e), where RMS, RSSQ and energy features are considered, an 

overlapping between boxes in low level of load condition can be detected too.  
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Figure 4.9: Trend and Boxplot for dimensional features in time domain analysis 

(a) Mean, (b) RMS, (c) RSSQ, (d) Peak to Peak and (e) Energy (Continued) 
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Figure 4.9: Trend and Boxplot for dimensional features in time domain analysis 

(a) Mean, (b) RMS, (c) RSSQ, (d) Peak to Peak and (e) Energy 

 

ANOVA analysis can complete the graphic information given by the boxplots. Table 

4.1 presents the result of ANOVA models for this five dimensional parameters 

adjusted based on motor condition; starting load condition and their interaction. In 

Table 4.1, the p-value for the Mean feature is more than 0.05 for interaction 

condition states that can check with post-hoc test. The performed ANOVA (Table 

4.1) for the rest of the features reveals a significant impact in the distinction among 

different test conditions. To perform a statistical comparison among the means for 

the features at different conditions, Tukey’s honest significant differences method 

was applied as post-hoc testing procedure. Table 4.2 presents the results of post-hoc 

testing procedure for dimensional parameters. The results indicate the p-value for the 

Peak to Peak feature is not significant in this test for the low load condition, the same 

result is also observed in the boxplots of Figure 4.9 (d), where there is an overlapping 

between the conditions. However, the remaining features have a significant p-value. 
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Table 4.1. Analysis of variance for dimensional parameter features in 

time domain analysis 

Feature Source 
Sum of 

Squares 
df 

Mean 

Square 
F P value 

Mean Motor Condition 1.03E-01 1 1.03E-01 508.694 1.71E-67 

 
Load 3.03E-03 3 1.01E-03 4.976 2.19E-03 

 
Interaction 1.70E-04 3 5.68E-05 0.28 0.84 

 
Error 6.33E-02 312 2.03E-04     

 
Total 1.70E-01 319       

RMS Motor Condition 6.526 1 6.526 274.615 1.10E-44 

 
Load 44.0642 3 14.6881 618.074 6.80E-131 

 
Interaction 1.0238 3 0.3413 14.361 8.68E-09 

 
Error 7.4144 312 0.0238     

 
Total 59.0285 319       

RSSQ Motor Condition 2.63E+04 1 2.63E+04 275.309 9.17E-45 

 
Load 1.75E+05 3 5.83E+04 610.481 3.60E-130 

 
Interaction 3.87E+03 3 1.29E+03 13.527 2.55E-08 

 
Error 2.98E+04 312 95.449     

 
Total 2.35E+05 319       

Peak  Motor Condition 40.404 1 40.404 39.504 1.10E-09 

to  Load 10.477 3 3.492 3.414 1.70E-02 

Peak Interaction 9.451 3 3.15 3.08 2.70E-02 

 
Error 319.106 312 1.023     

 
Total 379.437 319       

Energy Motor Condition 5.42E+09 1 5.42E+09 285.842 5.67E-46 

 
Load 3.72E+10 3 1.24E+10 653.36 4.00E-134 

 
Interaction 1.42E+09 3 4.75E+08 25.017 1.57E-14 

 
Error 5.92E+09 312 1.90E+07     

 
Total 4.99E+10 319       

 

Table 4.2: P-value calculation from post- hoc test procedure 

for dimensional parameter features in time domain analysis 

Load (Nm) Mean RMS RSSQ Peak to Peak  Energy 

0 6.0E-08 1.7E-06 1.6E-06 0.840 5.9E-05 

0.5 6.0E-08 7.6E-08 7.1E-08 0.287 3.8E-07 

1 6.0E-08 6.0E-08 6.0E-08 2.10E-02 6.0E-08 

1.5 6.0E-08 6.0E-08 6.0E-08 1.03E-06 6.0E-08 

 

Figure 4.10 shows the trend and boxplot graph for non-dimensional parameters. The 

comparison of the trend graph for non-dimensional parameter indicates there is an 

overlapping between the healthy situation and faulty one at different levels of 

starting load for some features like Shape Factor, Impulse Factor and Skewness 

(Figure 4.10 (a,b and g)). The remaining features do not have any overlapping 

between the healthy and faulty conditions (Figure 4.10 (c,d,e,f and h)). However, 

when the boxplot for these features are considered, a proof is obtained for this 

antithesis. In the case of Shape Factor and Impulse Factor (Figure 4.10 (a and b)), an 

overlapping can be seen between boxes corresponding to the conditions. The same 

overlapping is also observed in the trend graph. In Figure 4.10(g), where the 

Skewness feature is used, an overlapping between boxes in high level of load 

condition is also observed. It can be concluded that Shape Factor and Impulse Factor 
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feature are not appropriate parameter for fault detection. The Skewness feature, also, 

can be only used when the level of load is low.  

 

 

 
Figure 4.10: Trend and Boxplot for non-dimensional features in time domain 

analysis a) Shape Factor, b) Impulse Factor, c) Crest Factor, d) Margin Factor, 

e) Peak-to-average power ratio, f) Variance, g) Skewness and h) Kurtosis 

(Continued) 
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Figure 4.10: Trend and Boxplot for non-dimensional features in time domain 

analysis a) Shape Factor, b) Impulse Factor, c) Crest Factor, d) Margin Factor, 

e) Peak-to-average power ratio, f) Variance, g) Skewness and h) Kurtosis 

(Continued) 
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Figure 4.10: Trend and Boxplot for non-dimensional features in time domain 

analysis a) Shape Factor, b) Impulse Factor, c) Crest Factor, d) Margin Factor, 

e) Peak-to-average power ratio, f) Variance, g) Skewness and h) Kurtosis 
 



© C
OPYRIG

HT U
PM

 

 

 

87 

Table 4.3 presents the results of ANOVA models for eight non-dimensional 

parameters adjusted based on motor condition; starting load condition and their 

interaction. In Table 4.3, the p-value for the Shape Factor and Impulse Factor have 

values more than 0.05 for each motor condition, load and interaction condition states. 

This overlapping can be also observed in the boxplots of (Figure4.10-a,b), where 

there is an overlapping between the conditions. Hence, there is no significant 

evidence for interaction among the load conditions. In the Crest Factor, Peak-to-

average power ratio and Skewness features also have an insignificant impact in 

interaction part that can check with post-hoc test. The performed ANOVA (Table 

4.3) for the rest of features show a significant impact in the difference among 

conditions. Table 4.4 presents the results of post-hoc testing procedure for non-

dimensional parameters. The results show that at all load levels, the p-value for the 

Shape Factor and Impulse Factor feature are not significant. The p-value for the 

Skewness feature is not significant for high level of load condition too. The 

remaining features have significant p-values. 

 

This paragraph sums up the results obtained from time domain analysis of the signal. 

Three features, namely peak to peak, shape factor and impulse factor could not 

distinguish faulty state of motor from faulty-free state based on upward or downward 

trend. Skewness also failed to detect broken bar when the starting torque is high. 

This result also indicated the importance and significance of load value in starting 

torque on the fault diagnosis. The simulation results are presented in Appendix F. 

These results also concur with the experimental result in term of trend condition. 

Based on simulation results, four features, namely peak to peak, shape factor, 

impulse factor and Skewness had overlapping between load conditions and thus 

could not distinguish healthy state from faulty state based on upward or downward 

trend. 
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Table 4.3: Analysis of variance for non-dimensional parameter features 

in time domain analysis 

Feature Source 
Sum of 

Squares 
df 

Mean 

Square 
F P value 

Shape Motor Condition 2.50E+07 1 2.50E+07 1.0331 0.310 

Factor Load 1.02E+08 3 3.39E+07 1.4015 0.242 

 
Interaction 1.07E+08 3 3.58E+07 1.4823 0.219 

 
Error 7.54E+09 312 2.42E+07     

 
Total 7.77E+09 319       

Impulse  Motor Condition 1.64E+08 1 1.64E+08 0.984 0.322 

Factor Load 6.91E+08 3 2.30E+08 1.383 0.248 

 
Interaction 7.16E+08 3 2.39E+08 1.433 0.233 

 
Error 5.20E+10 312 1.67E+08     

 
Total 5.35E+10 319       

Crest  Motor Condition 10.512 1 10.512 143.140 2.09E-27 

Factor Load 33.128 3 11.043 150.366 2.77E-60 

 
Interaction 0.496 3 0.165 2.250 0.083 

 
Error 22.913 312 0.073     

 
Total 67.048 319       

Margin  Motor Condition 104.619 1 104.619 222.211 2.56E-38 

Factor Load 342.719 3 114.240 242.644 3.22E-81 

 
Interaction 3.958 3 1.319 2.803 0.040 

 
Error 146.893 312 0.471     

 
Total 598.189 319       

Peak-to- Motor Condition 6.20E+02 1 620.019 181.270 6.86E-33 

average  Load 1.28E+03 3 425.582 124.424 5.16E-53 

power  Interaction 2.90E+00 3 0.968 0.283 0.838 

ratio Error 1.07E+03 312 3.420     

 
Total 2.97E+03 319       

Variance Motor Condition 337.406 1 337.406 285.559 6.11E-46 

 
Load 2341.225 3 780.408 660.489 9.3E-135 

 
Interaction 93.396 3 31.132 26.348 3.23E-15 

 
Error 368.647 312 1.182     

 
Total 3140.674 319       

Skewness Motor Condition 0.420 1 0.420 71.791 8.7E-41 

 
Load 0.221 3 0.074 12.597 6.4E-103 

 
Interaction 0.272 3 0.091 15.526 0.7589 

 
Error 1.825 312 0.006     

 
Total 2.739 319       

kurtosis Motor Condition 49.144 1 49.1436 241.923 9.60E-16 

 
Load 227.714 3 75.9047 373.662 8.54E-08 

 
Interaction 0.239 3 0.0796 0.392 1.94E-09 

 
Error 63.379 312 0.2031     

 
Total 340.476 319       

 

Table 4.4: P-value calculation from post-hoc test procedure for non-

dimensional parameter features in time domain analysis 

Load 

(Nm) 

Shape 

Factor 

Impulse 

Factor 

Crest 

Factor 

Margin 

Factor 

 Peak-to-

average 

power ratio 

Variance  Skewness kurtosis 

0 1.00 1.00 8.7E-04 2.2E-06 1.0E-07 6.2E-05 6.0E-08 6.0E-08 

0.5 1.00 1.00 2.4E-07 6.0E-08 6.1E-08 5.1E-07 2.0E-06 6.0E-08 

1 1.00 1.00 7.8E-08 6.0E-08 6.0E-08 6.0E-08 0.068 6.0E-08 

1.5 0.304 0.304 6.0E-08 6.0E-08 6.0E-08 6.0E-08 1.000 6.0E-08 
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4.3.1.2  Time Domain Analysis based on Envelope Signal    

 

The broken rotor bar in squirrel cage induction machine induces the stator current 

amplitude (envelope) [37]. The amplitude of these frequency components can be 

used as indication of fault related feature. A new approach based on feature 

extraction from the envelope of the start-up current signal is investigated in this 

research. After pre-processing, the envelopes of startup current signals are extracted 

by using MATLAB software. Similar to the time domain analysis of raw signal, 

thirteenth statistical parameters are calculated and used to extract the features in time 

domain for broken rotor bar detection. Here also, 4160 data are obtained from these 

13 parameters for two motors (healthy and faulty) that run at four different levels of 

load and 40 measurements were performed for each condition.  

 

Figure 4.11 and Figure 4.12 show the trend and boxplot graph for different features, 

dimensional parameter and non-dimensional parameter, respectively. Analysis of 

these figures calculated from analysis of envelope will lead to several interesting 

conclusions. The overall conclusion is similar to the time analysis of raw signal, 

which is the results are not a like for all cases, each case should be studied and 

analysed separately. Results also indicate that for some features, it could be difficult 

to distinguish healthy and the faulty state, however these features are not exactly the 

one determined through time analysis of raw signal. The trend graphs for 

dimensional parameters obtained from time domain analysis of envelope show no 

overlap exists between the healthy and faulty situation at any levels of starting load. 

However, when a boxplot for these features are considered, there is some antithesis. 

In Figure 4.11(a,b,c and e), where Mean, RMS, RSSQ and Energy features are 

considered, there is an overlapping between boxes in low level of load condition. As 

Figure 4.11(d) shows, a few samples have overlapping between motor conditions in 

each level of load, while this overlapping cannot be observed in the trend graph. 

 

 

Figure 4.11: Trend and Boxplot for dimensional features in envelope analysis a) 

Mean, b) Root Mean Square (RMS), c) RSSQ, d) Peak to Peak and e) Energy 

(Continued) 
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Figure 4.11: Trend and Boxplot for dimensional features in envelope analysis a) 

Mean, b) Root Mean Square (RMS), c) RSSQ, d) Peak to Peak and e) Energy 

(Continued) 
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Figure 4.11: Trend and Boxplot for dimensional features in envelope analysis a) 

Mean, b) Root Mean Square (RMS), c) RSSQ, d) Peak to Peak and e) Energy 
 

Table 4.5 presents the results of ANOVA models for this five dimensional 

parameters adjusted based on motor condition; starting load condition and their 

interaction. In Table 4.5, the p-value for the Peak to Peak feature is more than 0.05 

for load and interaction condition states. The same result is observed in the boxplots 

of Figure 4.11(d), where there is an overlapping between the conditions. Hence, there 

is no significant evidence of interaction between the load condition states. The 

performed ANOVA (Table 4.5) for the rest of the features shows a significant impact 

in the distinction among different test conditions. To perform a statistical comparison 

among the means for the selected features at different conditions, Tukey’s honest 

significant differences method is applied as post-hoc testing procedure. Table 4.6 

presents the results of post-hoc testing procedure for dimensional parameters. The 

results indicate the p-value for the RMS, RSSQ and Energy features are not 

significant in the low level of load; however, the remaining features have a 

significant p-value. 
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Table 4.5: Analysis of variance for dimensional parameter features in 

envelope analysis 

Feature Source 
Sum of 

Squares 
df 

Mean 

Square 
F P value 

Mean Motor Condition 1.15E+01 1 1.15E+01 177.952 1.98E-32 

  Load 1.16E+02 3 3.88E+01 600.846 2.95E-129 

  Interaction 4.15E+00 3 1.38E+00 21.435 1.193E-12 

  Error 2.01E+01 312 6.45E-02     

  Total 1.52E+02 319       

RMS Motor Condition 5.81480 1 5.815 101.878 6.47E-21 

  Load 84.82857 3 28.276 495.412 2.76E-118 

  Interaction 1.91975 3 0.640 11.212 5.25E-07 

  Error 17.80776 312 0.057     

  Total 110.37089 319       

RSSQ Motor Condition 2.35E+04 1 2.35E+04 102.560 4.99E-21 

  Load 3.37E+05 3 1.12E+05 490.257 1.06E-117 

  Interaction 7.23E+03 3 2.41E+03 10.535 1.28E-06 

  Error 7.14E+04 312 228.799     

  Total 4.39E+05 319       

Peak  Motor Condition 689.523 1 689.523 142.563 2.55E-27 

to  Load 25.641 3 8.547 1.767 0.1534 

Peak Interaction 38.008 3 12.669 2.619 0.0509 

  Error 1509.023 312 4.837     

  Total 2262.196 319       

Energy Motor Condition 9.81E+09 1 9.81E+09 108.422 5.47E-22 

  Load 1.42E+11 3 4.74E+10 523.681 2.09E-121 

  Interaction 4.71E+09 3 1.57E+09 17.367 1.88E-10 

  Error 2.82E+10 312 9.04E+07     

  Total 1.85E+11 319       

 

Table 4.6: P-value calculation from post- hoc test procedure 

for dimensional parameter features in envelope analysis 

Load 

(Nm) 
Mean RMS RSSQ Peak to Peak  Energy 

0 6.70E-03 0.052 0.05 1.87E-03 0.170 

0.5 8.79E-04 0.093 0.08 5.99E-08 0.163 

1 2.28E-06 2.82E-04 1.30E-04 8.64E-08 3.58E-04 

1.5 5.99E-08 5.99E-08 5.99E-08 1.72E-07 5.99E-08 

 

Figure 4.12 shows the trend and boxplot graph for non-dimensional parameters 

obtained from time domain analysis of envelope. The comparison of the trend graph 

for non-dimensional parameter indicates there is an overlapping between the healthy 

situation and faulty one at different levels of starting load for the Variance features 

(Figure 4.12(f)). The remaining features do not have any overlap between the healthy 

and faulty conditions (Figure 4.12(a-e,g,h)). When the boxplot for these features are 

considered, the same results are concluded for these features too. 
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Figure 4.12: Trend and Boxplot for non-dimensional features in envelope 

analysis a) Shape Factor, b) Impulse Factor, c) Crest Factor, d) Margin Factor, 

e) Peak-to-average power ratio, f) Variance, g) Skewness and h) Kurtosis 

(Continued) 
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Figure 4.12: Trend and Boxplot for non-dimensional features in envelope 

analysis a) Shape Factor, b) Impulse Factor, c) Crest Factor, d) Margin Factor, 

e) Peak-to-average power ratio, f) Variance, g) Skewness and h) Kurtosis 

(Continued) 
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Figure 4.12: Trend and Boxplot for non-dimensional features in envelope 

analysis a) Shape Factor, b) Impulse Factor, c) Crest Factor, d) Margin Factor, 

e) Peak-to-average power ratio, f) Variance, g) Skewness and h) Kurtosis. 
 

Table 4.7 presents the results of ANOVA models for eight non-dimensional 

parameters adjusted based on motor condition; starting load condition and their 

interaction. In Table 4.7, the p-value for the Impulse Factor, Crest Factor, Margin 

Factor and Peak-to-average power ratio have values more than 0.05 for each 

interaction condition states.  Hence, there is no significant evidence for interaction 

among the motor condition and load conditions. The performed ANOVA (Table 4.7) 

for the rest of the features show a significant impact in the difference among 

conditions. Table 4.8 presents the results of post-hoc testing procedure for non-

dimensional parameters. The results show that the p-value for the Variance feature is 

not significant in this test for all levels of load except full load condition. The p-value 

for the Kurtosis feature is also not significant for high level of load condition and the 

remaining features have a significant p-value. 
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Table 4.7: Analysis of variance for non-dimensional parameter features in 

envelope analysis 

Feature Source 
Sum of 

Squares 
df 

Mean 

Square 
F P value 

Shape Motor Condition 2.41E-01 1 2.41E-01 384.324 2.47E-56 

Factor Load 1.31E+00 3 4.37E-01 695.986 7.88E-138 

  Interaction 2.22E-02 3 7.40E-03 11.776 2.50E-07 

  Error 1.96E-01 312 6.28E-04     

  Total 1.77E+00 319       

Impulse  Motor Condition 1.07E+02 1 1.07E+02 187.471 9.67E-34 

Factor Load 9.09E+01 3 3.03E+01 52.980 1.05E-27 

  Interaction 2.58E+00 3 8.61E-01 1.505 0.213 

  Error 1.78E+02 312 5.72E-01     

  Total 3.79E+02 319       

Crest  Motor Condition 47.294 1 47.294 173.386 8.59E-32 

Factor Load 27.367 3 9.122 33.444 9.06E-19 

  Interaction 1.258 3 0.419 1.537 0.205 

  Error 85.104 312 0.273     

  Total 161.023 319       

Margin  Motor Condition 171.370 1 171.370 196.200 6.39E-35 

Factor Load 166.255 3 55.418 63.448 4.72E-32 

  Interaction 4.555 3 1.518 1.738 0.159 

  Error 272.516 312 0.873     

  Total 614.696 319       

Peak-to- Motor Condition 1.48E+03 1 1481.137 148.549 3.27E-28 

average  Load 7.33E+02 3 244.292 24.501 2.91E-14 

power  Interaction 6.99E+01 3 23.294 2.336 0.074 

ratio Error 3.11E+03 312 9.971     

  Total 5.39E+03 319       

Variance Motor Condition 9.513 1 9.513 19.233 1.58E-05 

  Load 47.739 3 15.913 32.173 3.81E-18 

  Interaction 23.297 3 7.766 15.701 1.56E-09 

  Error 154.320 312 0.495     

  Total 234.869 319       

Skewness Motor Condition 9.167 1 9.167 269.610 4.22E-44 

  Load 40.236 3 13.412 394.469 8.42E-106 

  Interaction 0.352 3 0.117 3.449 1.70E-02 

  Error 10.608 312 0.034     

  Total 60.363 319       

kurtosis Motor Condition 34.497 1 34.497 122.507 3.07E-24 

  Load 80.151 3 26.717 94.878 1.17E-43 

  Interaction 5.764 3 1.921 6.823 1.82E-04 

  Error 87.857 312 0.282     

  Total 208.269 319       

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

 

 

97 

Table 4.8: P-value calculation from post-hoc test procedure for non-dimensional 

parameter features in envelope analysis 

Load 

(Nm) 

Shape 

Factor 

Impulse 

Factor 

Crest 

Factor 

Margin 

Factor 

 Peak-to-

average 

 power ratio 

Variance  Skewness kurtosis 

0 5.9E-08 7.6E-07 1.0E-05 6.2E-07 8.3E-06 1.00 5.9E-08 5.9E-08 

0.5 5.9E-08 5.9E-08 5.9E-08 5.9E-08 5.9E-08 0.83 6.0E-08 5.9E-08 

1 5.9E-08 6.0E-08 6.0E-08 5.9E-08 7.0E-08 1.00 5.9E-08 1.2E-07 

1.5 5.9E-08 6.3E-08 6.4E-08 6.0E-08 4.1E-05 5.9E-08 5.9E-08 0.68 

 

This paragraph sums up the results obtained from time domain analysis based on 

Envelope Signal. Four features, namely RMS, RSSQ, Energy and Variance could not 

distinguish faulty state of motor from faulty-free state in low level of load. The 

variance feature is also failed to detect the fault based on upward or downward trend. 

Kurtosis feature is also failed to detect broken rotor bar when the starting torque was 

high. The mentioned results also proved the importance and significance of load 

value in starting torque on the fault diagnosis. The simulation results presented in 

Appendix G. is also following the experimental result in term of trend condition. 

Two features, namely peak to peak and Variance had overlapping between load 

conditions and hence could not distinguish faulty-free state from faulty state based 

on upward or downward trend. 

 

4.3.2  Time-Frequency Domain Analysis   

 

In order to examine wavelet analysis for broken rotor bar detection, stator current of 

healthy motor and faulty motor with one broken bar were monitored under different 

levels of starting load (0, 0.5, 1 and 1.5Nm). The motor under observation was 

sampled 40 times at each case, hence 320 samples were obtained. Wavelet analysis 

of the current signal was performed using Wavelet Toolbox™ in MATLAB 

environment and the M-file was written in MATLAB® workspace appended in 

Appendix E. The types of wavelet function for fault diagnosis purpose have been 

chosen by user’s decision so far. It is therefore desirable to select a wavelet function 

that produces the best results for the signal being analyzed and prevent to misleading 

diagnosis. Several types of wavelet function, which have been applied in previous 

research, were investigated for providing features that can be associated to the 

existing fault, broken rotor bar, in a motor under different levels of load. It is 

important to realize the complexity of wavelet function selection for fault-related 

feature extraction. Accordingly, the selections of best wavelet functions with 

different order are essential. In this research, 102 wavelet functions have been chosen 

for examination of broken rotor bar detection to find the best wavelet functions as 

describe in Table 3.2.In this part, the selected decomposition level was verified such 

that the number of appropriate features was compared in the levels six and seven 

using the proposed algorithm. The reconstructed signal that come from the detail and 

approximation of level 7 and also approximation of level 6 are used as an input 

signal for calculating the fault related feature. The features that used in this research 

are Log energy Entropy and Shannon Entropy. After analysing the data and compute 

the features, the ANOVA analysis can compare the result based on motor condition; 

starting load condition and their interaction. Accordingly, the objective of this part is 



© C
OPYRIG

HT U
PM

 

 

 

98 

to examine different wavelet functions for broken rotor bar detection based on three 

features that mentioned. 

 

Table 4.9 presents the results of ANOVA models for one type of mother wavelet 

named “dmey” for Log energy Entropy and Shannon Entropy features based on 

motor condition; starting load condition and their interaction features in Detail of 

level 7. The p-values for the two features are less than 0.05 for each condition, load 

and interaction states that means, the performed ANOVA (Table 4.9) indicates a 

significant impact in the difference among conditions. Table 4.10 presents the results 

of post-hoc testing procedure for Entropy features using “dmey” mother wavelet. 

The results show that the p-value for the Shannon Entropy feature is not significant 

in this test in low levels of load except full load condition. The p-value for the Log 

Energy Entropy feature is also significant for all levels of load condition. 

 

From the results of Table 4.9 and Table 4.10 it can be concluded that with using 

“dmey” mother wavelet and Log Energy Entropy feature, broken rotor bar fault can 

be detected in LS-PMSM. The 102 different mother wavelets were tested with this 

method to determine the ability of the features and mother wavelet to detect broken 

rotor bar fault and the results are shown in Table 4.11, Table 4.12 and Table 4.13. 

 

Table 4.9: Analysis of variance for Entropy features using “dmey” mother 

wavelet in Detail of level 7. 

Feature Source 
Sum of 

Squares 
df 

Mean 

Square 
F P value 

Shannon  

Entropy 

Motor Condition 2.29E+08 1 2.29E+08 72.073 8.54E-16 

Load 1.70E+09 3 5.66E+08 178.433 2.32E-67 

Interaction 5.49E+07 3 1.83E+07 5.767 7.54E-04 

Error 9.90E+08 312 3.17E+06     

Total 2.97E+09 319       

Log Energy 

Entropy 

Motor Condition 6.57E+08 1 6.57E+08 255.206 2.14E-42 

Load 4.43E+09 3 1.48E+09 573.843 1.3E-126 

Interaction 6.19E+07 3 2.06E+07 8.021 3.64E-05 

Error 8.03E+08 312 2.57E+06     

Total 5.95E+09 319       

 

Table 4.10: P-value calculation from post-hoc test procedure for Entropy 

features using “dmey” mother wavelet in Detail of level 7. 

Load 

(Nm) 

Shannon  

Entropy 

Log Energy 

Entropy 

0 0.764 1.2E-04 

0.5 0.082 6.0E-08 

1 6.6E-08 6.0E-08 

1.5 7.3E-08 6.0E-08 
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Table 4.11, Table 4.12 and Table 4.13 present the results of ANOVA and post-hoc 

testing procedure for two different features in 102 different mother wavelets. The 

mean values were compared using Tukey’s honest significant differences test at P ≤ 

0.05 and in the tables, it put “Y” if the values are significant for all P-value. In Table 

4.11 used the Frequency band ranges of [39.06-0]Hz that is belong to the 

approximation of level 6. As it is clear in this table the Shannon Entropy feature is 

not significant for broken rotor bar detection in different type of mother wavelet. 

However, Log Energy Entropy is highly significant to detection of broken rotor bar. 

In Table 4.12 used the Frequency band ranges of [39.06-19.53]Hz that is belong to 

decomposition of original signal in detail of level 7. The result in this table present 

that Shannon Entropy is not significant for broken rotor bar detection, and the only 

feature can used is Log Energy Entropy. Table 4.13 used the Frequency band ranges 

of [19.53-0]Hz that is belong to decomposition of original signal of the 

approximation of level 7. As it is clear also in this table, Shannon Entropy is not 

significant for broken rotor bar detection, and the only feature can used is Log 

Energy Entropy for using a few type of mother wavelet. The simulation results using 

time-frequency domain method (Wavelet Transform) are presented in Appendix H. 

The result of simulation also shows that the Log Energy Entropy feature is highly 

significant to detection of broken rotor bar. 

 

 In summary the result are as follow:  

 among a wide variety of mother wavelets, Log Energy Entropy has 

satisfactory performances for broken rotor bar fault detection compare to 

Shannon Entropy. 

 the results are not the same with different approximation and detail 

coefficient in same decomposition level. The results also present that the 

most effective part is the Detail of level 7 that include the Frequency band 

ranges of [39.06-19.53]Hz. This is also observed in the simulation result. 

 

4.4  Summary 

 

In summary, the results and the corresponding discussions are presented in this 

chapter.  The outcomes are derived based on the application of the methodology 

introduced in the previous chapter. The simulation work considering the detailed 

real-world parameters conforms to the experimental work to validate the accuracy of 

results. Different signal processing techniques based on Time domain and time-

frequency domain in current spectrum of 4-pole LSPMSM are analyzed. The 

effective features related to broken rotor bar are identified for further detection 

process and maintenance strategies. The capabilities of relevant features versus load 

variation are investigated. 
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Table 4.11: P-value signification from post-hoc test procedure for features in 

approximation of level 6 

Mother 

Wavelet 

Features 
Mother 

Wavelet 

Features 

Shannon  

Entropy 

Log Energy 

Entropy 

Shannon  

Entropy 

Log Energy 

Entropy 

'dmey' - - 'sym5' - Y 

'haar' - - 'sym6' - Y 

'db1' - - 'sym7' - Y 

'db2' - Y 'sym8' - Y 

'db3' - Y 'sym9' - Y 

'db4' - Y 'sym10' - Y 

'db5' - Y 'sym11' - Y 

'db6' - Y 'sym12' - Y 

'db7' - Y 'sym13' - Y 

'db8' - Y 'sym14' - Y 

'db9' - Y 'sym15' - Y 

'db10' - Y 'sym16' - Y 

'db11' - Y 'sym17' - Y 

'db12' - Y 'sym18' - Y 

'db13' - Y 'sym19' - Y 

'db14' - Y 'sym20' - Y 

'db15' - Y 'coif1' - Y 

'db16' - Y 'coif2' - Y 

'db17' - Y 'coif3' - Y 

'db18' - Y 'coif4' - Y 

'db19' - Y 'coif5' - Y 

'db20' - Y 'bior1.1' - - 

'db21' - Y 'bior1.3' - - 

'db22' - - 'bior1.5' - Y 

'db23' - Y 'bior2.2' - Y 

'db24' - Y 'bior2.4' - Y 

'db25' - - 'bior2.6' - Y 

'db26' - - 'bior2.8' - Y 

'db27' - - 'bior3.1' - Y 

'db28' - - 'bior3.3' - Y 

'db29' - - 'bior3.5' - - 

'db30' - - 'bior3.7' - Y 

'db31' - - 'bior3.9' - Y 

'db32' - - 'bior4.4' - Y 

'db33' - - 'bior5.5' - Y 

'db34' - - 'bior6.8' - Y 

'db35' - - 'rbio1.1' - - 

'db36' - - 'rbio1.3' - - 

'db37' - - 'rbio1.5' - - 

'db38' - - 'rbio2.2' - Y 

'db39' - - 'rbio2.4' - Y 

'db40' - - 'rbio2.6' - Y 

'db41' - - 'rbio2.8' - Y 

'db42' - - 'rbio3.1' - Y 

'db43' - - 'rbio3.3' - Y 

'db44' - - 'rbio3.5' - Y 

'db45' - - 'rbio3.7' - Y 

'sym1' - - 'rbio3.9' - Y 

'sym2' - Y 'rbio4.4' - Y 

'sym3' - Y 'rbio5.5' - Y 

'sym4' - Y 'rbio6.8' - Y 
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Table 4.12: P-value signification from post-hoc test procedure for features in 

Detail of level 7 

Mother 

Wavelet 

Features 
Mother 

Wavelet 

Features 

Shannon  

Entropy 

Log Energy 

Entropy 

Shannon  

Entropy 

Log Energy 

Entropy 

'dmey' - Y 'sym5' - Y 

'haar' - - 'sym6' - Y 

'db1' - - 'sym7' - Y 

'db2' - Y 'sym8' - Y 

'db3' - Y 'sym9' - Y 

'db4' - Y 'sym10' - Y 

'db5' - Y 'sym11' - Y 

'db6' - Y 'sym12' - Y 

'db7' - Y 'sym13' - Y 

'db8' - Y 'sym14' - Y 

'db9' - Y 'sym15' - Y 

'db10' - Y 'sym16' - Y 

'db11' - Y 'sym17' - - 

'db12' - Y 'sym18' - Y 

'db13' - Y 'sym19' - Y 

'db14' - - 'sym20' - Y 

'db15' - Y 'coif1' - Y 

'db16' - Y 'coif2' - Y 

'db17' - Y 'coif3' - Y 

'db18' - - 'coif4' - Y 

'db19' - Y 'coif5' - Y 

'db20' - Y 'bior1.1' - - 

'db21' - Y 'bior1.3' - Y 

'db22' - - 'bior1.5' - Y 

'db23' - Y 'bior2.2' - Y 

'db24' - Y 'bior2.4' - Y 

'db25' - Y 'bior2.6' - Y 

'db26' - Y 'bior2.8' - Y 

'db27' - Y 'bior3.1' - Y 

'db28' - Y 'bior3.3' - Y 

'db29' - Y 'bior3.5' - Y 

'db30' - Y 'bior3.7' - Y 

'db31' - Y 'bior3.9' - Y 

'db32' - Y 'bior4.4' - Y 

'db33' - - 'bior5.5' - Y 

'db34' - - 'bior6.8' - Y 

'db35' - Y 'rbio1.1' - - 

'db36' - Y 'rbio1.3' - - 

'db37' - Y 'rbio1.5' - - 

'db38' - Y 'rbio2.2' - Y 

'db39' - Y 'rbio2.4' - Y 

'db40' - Y 'rbio2.6' - Y 

'db41' - Y 'rbio2.8' - Y 

'db42' - Y 'rbio3.1' - Y 

'db43' - Y 'rbio3.3' - Y 

'db44' - Y 'rbio3.5' - Y 

'db45' - Y 'rbio3.7' - Y 

'sym1' - - 'rbio3.9' - Y 

'sym2' - Y 'rbio4.4' - Y 

'sym3' - Y 'rbio5.5' - Y 

'sym4' - Y 'rbio6.8' - Y 
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Table 4.13: P-value signification from post-hoc test procedure for features in 

approximation of level 7 

Mother 

Wavelet 

Features 
Mother 

Wavelet 

Features 

Shannon  

Entropy 

Log Energy 

Entropy 

Shannon  

Entropy 

Log Energy 

Entropy 

'dmey' - - 'sym5' - Y 

'haar' - - 'sym6' - - 

'db1' - - 'sym7' - - 

'db2' - Y 'sym8' - - 

'db3' - Y 'sym9' - - 

'db4' - - 'sym10' - - 

'db5' - - 'sym11' - - 

'db6' - - 'sym12' - - 

'db7' - - 'sym13' - - 

'db8' - - 'sym14' - - 

'db9' - - 'sym15' - - 

'db10' - - 'sym16' - - 

'db11' - - 'sym17' - - 

'db12' - - 'sym18' - - 

'db13' - - 'sym19' - - 

'db14' - - 'sym20' - - 

'db15' - - 'coif1' - Y 

'db16' - - 'coif2' - Y 

'db17' - - 'coif3' - - 

'db18' - - 'coif4' - - 

'db19' - - 'coif5' - - 

'db20' - - 'bior1.1' - - 

'db21' - - 'bior1.3' - - 

'db22' - - 'bior1.5' - - 

'db23' - - 'bior2.2' - Y 

'db24' - - 'bior2.4' - Y 

'db25' - - 'bior2.6' - Y 

'db26' - - 'bior2.8' - - 

'db27' - - 'bior3.1' - Y 

'db28' - - 'bior3.3' - Y 

'db29' - - 'bior3.5' - - 

'db30' - - 'bior3.7' - - 

'db31' - - 'bior3.9' - - 

'db32' - - 'bior4.4' - Y 

'db33' - - 'bior5.5' - Y 

'db34' - - 'bior6.8' - - 

'db35' - - 'rbio1.1' - - 

'db36' - - 'rbio1.3' - - 

'db37' - - 'rbio1.5' - - 

'db38' - - 'rbio2.2' - - 

'db39' - - 'rbio2.4' - Y 

'db40' - - 'rbio2.6' - Y 

'db41' - - 'rbio2.8' - Y 

'db42' - - 'rbio3.1' - - 

'db43' - - 'rbio3.3' - - 

'db44' - - 'rbio3.5' - - 

'db45' - - 'rbio3.7' - - 

'sym1' - - 'rbio3.9' - - 

'sym2' - Y 'rbio4.4' - - 

'sym3' - Y 'rbio5.5' - - 

'sym4' - Y 'rbio6.8' - - 
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CHAPTER 5 

 

CONCLUSION AND FUTURE RECOMMENDATIONS 

 

This chapter presents a summary of the accomplishments and reviews the 

observations and achievements of the current research. It also addresses suggestions 

regarding possible directions of future research topics.  

 

5.1  Conclusions 

 

Electrical machine is one of the most important equipment in industrial processes. 

However, failures in different parts of electrical machine do occur because it is 

generally under different stresses. Fault diagnosis of electrical machine is an on-

going research topic. The new electrical machine namely, LS-PMSM has been 

recently introduced and launched to be operated in industrial sectors. This motor is a 

suitable choice because of its high efficiency and high power factor. Application of 

LS-PMSM is growing gradually while the industry is still lacking an accurate fault 

detection criterion for maintenance policy of the motor. The main objective of this 

research is to study and investigate broken rotor bar fault detection in a LS-PMSM. 

The proposed method can be applied in the fault detection devices and also in the 

online monitoring systems. Moreover, the proposed method can be helpful for the 

manufacture to set the preventive maintenance programs based on signal analysis of 

input current duration of motor operation. 

 

As LS-PMSM is new, no research has been performed on its fault detection. The 

importance of broken bar detection has been addressed comprehensively based on 

squirrel cage induction machine in Chapter 2. Different types of signal can be 

collected from electrical machine to discover the condition or situation of machine, 

however, for reliable fault detection the best signal should be selected and captured 

correctly. In the second part of Chapter 2, different types of signals that can be 

collected from electrical machine and employed for broken rotor bar detection in 

squirrel-cage induction machine was extensively described. Signal capturing is a 

significant step involved in fault detection procedures and can be performed by on-

line or off-line techniques with invasive or non-invasive characteristics. Non-

invasive methods provide useful information for fault detection without installation 

of extra sensor or changing of the machine structure. A non-invasive technique 

known as Motor Current Signature Analysis (MCSA) has been considered as the 

most promising technique for broken rotor bar detection and thus is selected for this 

research. The stator current signal of LS-PMSM during its start-up is sampled for 

signature analysis and extraction of fault-related features. Current signal at transient 

condition (start-up condition) of LS-PMSM is analysed because the squirrel cage of 

LS-PMSM is only working during transient condition.  

 

In the third part of Chapter 2, Different types of signal processing methods for 

extracting of features related to broken bar in squirrel cage induction machine was 



© C
OPYRIG

HT U
PM

 

 

 

104 

extensively described. Among different methods of signal processing, time domain 

analysis and Wavelet transform (a time-frequency domain analysis) are applied 

based on the nature of the signal used in this study. Thirteen statistical features in 

time domain and two features in time-frequency domain are appraised to find the 

reliable features related to broken rotor bar. In the last part of Chapter 3, the 

statistical analysis was introduced to evaluate the features used in this study for 

broken bar detection. Investigation of behavior of these features is critical for 

decision making step. Trend and box plot graphs are used to evaluate the effects of 

load on tendency of feature with increasing and decreasing of incline. Analysis of 

Variance (ANOVA) is also used to evaluate the features characteristic in each 

condition and load. 

 

Finite Element Method (FEM) is a precise technique to analyse the electrical 

machines in different conditions. An investigation based on FEM is performed using 

Maxwell 2-D software according to real detailed parameters and the condition of 

experiment in order to validate with experimental result. In this research, broken 

rotor bar detection is also experimentally investigated. A three-phase, 4-pole LS-

PMSM model (TA80-4) is utilized to investigate the effects of broken rotor bar on 

motor performance. Laboratory test rig is developed using the relevant equipment to 

carry out the experimental study. 

 

This research indicates the importance of load effects on broken bar detection. The 

current signal is collected in different load levels of starting torque within four steps, 

which increases from 0% to 65%. The experimental and simulation result 

substantiate that increasing the load, will also increase the starting time duration. The 

time duration of machine with one broken rotor bar also increases compared to 

healthy condition. The broken rotor bar also affects the value of starting torque. The 

experimental and simulation results both proved that starting torque for motor with 

one broken rotor bar drops to near 1.7(Nm), where starting torque for healthy motor 

is 2.3(Nm).  

 

In the time domain analysis, three features, namely peak to peak, shape factor and 

impulse factor cannot distinguish faulty state of motor from faulty-free state based on 

upward or downward trend. Skewness also fails to detect broken bar when the 

starting torque is high. In time domain analysis using of envelop signal, four features, 

namely RMS, RSSQ, Energy and Variance cannot distinguish faulty state of motor 

from healthy state in low level of load. The variance feature also fails to detect the 

fault based on upward or downward trend. When the starting torque is high, Kurtosis 

feature is not a suitable feature to detect broken rotor bar. Experimental and 

simulation results corroborate each other and validate the overall work. 

 

In the time-frequency domain analysis, Log Energy Entropy feature has satisfactory 

performances for broken rotor bar detection compare to Shannon Entropy feature. 

The result also presents that the most effective sub-band frequency is Detail of level 

7 that includes the frequency band ranges of [39.06-19.53]Hz.  
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The significant contribution of this research is investigation of broken rotor bar in 

three-phase LS-PMSM under different operation conditions. Since the current 

research is the first work on broken rotor bar detection in LS-PMSM, the simulation 

and experimental results are compared to identify the efficient features extracted 

from start-up current signal for reliable and cost-effective detection. Experimental 

and simulation results corroborate each other and validate the overall work. 

 

5.2  Future works and Recommendations 

 

Since the study of faults in LS-PMSM has just started, it is of interest to propose 

further overall works according to the results achieved. The following researches are 

suggested: 

 

1) to extend the detection method for diagnosis of broken rotor bar in LS-

PMSM that use drive system, and 

2) applying of intelligent techniques to increase the ability and accuracy of fault 

detection in the decision making part, and 

3) to extend the detection method for diagnosis of other electrical and 

mechanical faults in LS-PMSM. 
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APPENDICES 

APPENDIX A 

The specifications and dimensions of the machine 

 

 

Winding diagram 
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Coil Diagram 

 

 
 

 

 

Stator Dimensions 
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Rotor Dimensions 

 

 
 

 

 

Rotor Dimensions 
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APPENDIX B 

The B-Hcurve and Iron loss curve for stator and rotor lamination. 
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APPENDIX C 

The details of permanent magnet  
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APPENDIX D 

The specifications of current transducer. 
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APPENDIX E 

The M-file was written in MATLAB® workspace for signal processing. 

Time Domain Analysis 

load('Healthy.mat') 

a=1; 

 

for i=1:4;   % Loop for different Load 

 

        for j = 1:40; Loop for different sample 

  

        % open the file     

        file_name=Healthy{i,j}; 

        data = load(file_name); 

        A = struct2cell(data); 

        B= cell2mat(A); 

                 

        % ---------- Calculation of Statistical Feature based on Time domain ------------- % 

        X=B (:,2); 

        RMS = rms(X); 

        RSSQ = rssq(X);         % Root-sum-of-squares level 

        KURTOSIS = kurtosis(X); 

        SKEWNESS = skewness(X); 

        Mean = mean(X);         % mean 

        Variance = moment(X,2);  % variance 

        PtoP = peak2peak(X); % Peak-to-Peak 

        PtoRMS = peak2rms(X);   % CrestFactor 

        PAPR = ((max(X))^2)/((rms(X))^2);    % Peak-to-average power ratio(dB) 

        ShapeFactor = rms(X)/mean(X);         

        ImpulseFactor = max(abs(X))/mean(X);  

        RootX= abs((X.^0.5)); 

        MarginFactor = max(abs(X))/(sum(RootX)/N)^2; %N:lenght X 

        Energy = sum(X.^2); 

         

        ResultRMS(j,a) = RMS; %1 

        ResultRSSQ(j,a) = RSSQ; %2 

        ResultKurtosis(j,a) = KURTOSIS;  %3 

        ResultSkewness(j,a) = SKEWNESS;  %4 

        ResultMean (j,a) = Mean;  %5 

        ResultVariance (j,a) = Variance;  %6 

        ResultPtoP(j,a) = PtoP;  %7 

        ResultPtoRMS(j,a) = PtoRMS;  %8 

        ResultPAPR(j,a) = PAPR;  %9 

        ResultShapeFactor(j,a) = ShapeFactor;  %10 

        ResultImpulseFactor(j,a) = ImpulseFactor;  %11 

        ResultMarginFactor(j,a) = MarginFactor;  %12 

        ResultEnergy(j,a) = Energy;  %13 

          

        clear RMS RSSQ KURTOSIS SKEWNESS Mean MOMENT2 

        clear PtoP PtoRMS PAPR ShapeFactor ImpulseFactor MarginFactor HistogramLower 

        clear HistogramUpper RootX Energy X A B  

  

        end % Loop for different sample 

         a=a+2; 

         

end  % Loop for different Load 

clear i j a 



© C
OPYRIG

HT U
PM

 

 

 

130 

load('Faulty.mat') 
a=2; 

 

for i=1:4;   % Loop for different Load 

 

        for j = 1:40; Loop for different sample 

  

        % open the file     

        file_name=Faulty{i,j}; 

        data = load(file_name); 

        A = struct2cell(data); 

        B= cell2mat(A); 

                 

        % ---------- Calculation of Statistical Feature based on Time domain ------------- % 

        X=B (:,2); 

        RMS = rms(X); 

        RSSQ = rssq(X);         % Root-sum-of-squares level 

        KURTOSIS = kurtosis(X); 

        SKEWNESS = skewness(X); 

        Mean = mean(X);         % mean 

        Variance = moment(X,2);  % variance 

        PtoP = peak2peak(X); % Peak-to-Peak 

        PtoRMS = peak2rms(X);   % CrestFactor 

        PAPR = ((max(X))^2)/((rms(X))^2);    % Peak-to-average power ratio(dB) 

        ShapeFactor = rms(X)/mean(X);         

        ImpulseFactor = max(abs(X))/mean(X);  

        RootX= abs((X.^0.5)); 

        MarginFactor = max(abs(X))/(sum(RootX)/N)^2; %N:lenght X 

        Energy = sum(X.^2); 

         

        ResultRMS(j,a) = RMS; %1 

        ResultRSSQ(j,a) = RSSQ; %2 

        ResultKurtosis(j,a) = KURTOSIS;  %3 

        ResultSkewness(j,a) = SKEWNESS;  %4 

        ResultMean (j,a) = Mean;  %5 

        ResultVariance (j,a) = Variance;  %6 

        ResultPtoP(j,a) = PtoP;  %7 

        ResultPtoRMS(j,a) = PtoRMS;  %8 

        ResultPAPR(j,a) = PAPR;  %9 

        ResultShapeFactor(j,a) = ShapeFactor;  %10 

        ResultImpulseFactor(j,a) = ImpulseFactor;  %11 

        ResultMarginFactor(j,a) = MarginFactor;  %12 

        ResultEnergy(j,a) = Energy;  %13 

          

        clear RMS RSSQ KURTOSIS SKEWNESS Mean MOMENT2 

        clear PtoP PtoRMS PAPR ShapeFactor ImpulseFactor MarginFactor HistogramLower 

        clear HistogramUpper RootX Energy X A B  

  

        end % Loop for different sample 

         a=a+2; 

         

end  % Loop for different Load 

clear i j a 
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Time Domain Analysis based on Envelope Signal   
 

load('Healthy.mat') 

a=1; 

 for i=1:4;   % Loop for different Load 

 

        for j = 1:40; Loop for different sample 

  

        % open the file     

        file_name=Healthy{i,j}; 

        data = load(file_name); 

        A = struct2cell(data); 

        B= cell2mat(A); 

         

        % ----%Calculation of Statistical Feature based on Time - Envelope ------------- % 

        P=B (:,2); 

        [up,lo] =envelope (P); 

        X=up; 

        N = length(X);          % N: number of row in X 

        RMS = rms(X); 

        RSSQ = rssq(X);         % Root-sum-of-squares level 

        KURTOSIS = kurtosis(X); 

        SKEWNESS = skewness(X); 

        Mean = mean(X);          

        Variance = moment(X,2);  % variance 

        PtoP = peak2peak(X); 

        PtoRMS = peak2rms(X);   % CrestFactor or peak-to-RMS ratio 

        LogDectect = exp(mean(log(abs(X))));   

        PAPR = ((max(X))^2)/((rms(X))^2);    % peak-to-average power ratio(dB) 

        ShapeFactor = rms(X)/mean(X);         

        ImpulseFactor = max(abs(X))/mean(X);  

        RootX= abs((X.^0.5)); 

        MarginFactor = max(abs(X))/(sum(RootX)/N)^2;  

        Energy = sum(X.^2); 

         

        ResultRMS(j,a) = RMS; %1 

        ResultRSSQ(j,a) = RSSQ; %2 

        ResultKurtosis(j,a) = KURTOSIS;  %3 

        ResultSkewness(j,a) = SKEWNESS;  %4 

        ResultMean (j,a) = Mean;  %5 

        ResultVariance (j,a) = Variance;  %6 

        ResultPtoP(j,a) = PtoP;  %7 

        ResultPtoRMS(j,a) = PtoRMS;  %8 

        ResultPAPR(j,a) = PAPR;  %9 

        ResultShapeFactor(j,a) = ShapeFactor;  %10 

        ResultImpulseFactor(j,a) = ImpulseFactor;  %11 

        ResultMarginFactor(j,a) = MarginFactor;  %12 

        ResultEnergy(j,a) = Energy;  %13 

         

        clear RMS RSSQ KURTOSIS SKEWNESS Mean MOMENT2  

        clear PtoP PtoRMS PAPR ShapeFactor ImpulseFactor MarginFactor  

        clear RootX LogDectect Energy X N P up lo A B  

  

        end % Loop for different sample 

      

    a=a+2; 

         

    end  % Loop for different Load 

    clear i j w a 
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load('Faulty.mat') 

a=2; 

  

for i=1:4;   % Loop for different Load 

 

        for j = 1:40; Loop for different sample 

  

        % open the file     

        file_name=Faulty{i,j}; 

        data = load(file_name); 

        A = struct2cell(data); 

        B= cell2mat(A); 

         

        % ----%Calculation of Statistical Feature based on Time - Envelope ------------- % 

        P=B (:,2); 

        [up,lo] =envelope (P); 

        X=up; 

        N = length(X);          % N:number of row in X 

        RMS = rms(X); 

        RSSQ = rssq(X);         % Root-sum-of-squares level 

        KURTOSIS = kurtosis(X); 

        SKEWNESS = skewness(X); 

        Mean = mean(X);          

        Variance = moment(X,2);  % variance 

        PtoP = peak2peak(X); 

        PtoRMS = peak2rms(X);   % CrestFactor 

        LogDectect = exp(mean(log(abs(X))));   

        PAPR = ((max(X))^2)/((rms(X))^2);    % peak-to-average power ratio(dB) 

        ShapeFactor = rms(X)/mean(X);         

        ImpulseFactor = max(abs(X))/mean(X);  

        RootX= abs((X.^0.5)); 

        MarginFactor = max(abs(X))/(sum(RootX)/N)^2;  

        Energy = sum(X.^2); 

  

        ResultRMS(j,a) = RMS; %1 

        ResultRSSQ(j,a) = RSSQ; %2 

        ResultKurtosis(j,a) = KURTOSIS;  %3 

        ResultSkewness(j,a) = SKEWNESS;  %4 

        ResultMean (j,a) = Mean;  %5 

        ResultVariance (j,a) = Variance;  %6 

        ResultPtoP(j,a) = PtoP;  %7 

        ResultPtoRMS(j,a) = PtoRMS;  %8 

        ResultPAPR(j,a) = PAPR;  %9 

        ResultShapeFactor(j,a) = ShapeFactor;  %10 

        ResultImpulseFactor(j,a) = ImpulseFactor;  %11 

        ResultMarginFactor(j,a) = MarginFactor;  %12 

        ResultEnergy(j,a) = Energy;  %13 

  

        clear RMS RSSQ KURTOSIS SKEWNESS Mean MOMENT2 

        clear PtoP PtoRMS PAPR ShapeFactor ImpulseFactor MarginFactor  

        clear RootX Energy X N A B P up lo 

          

        end % Loop for different sample 

 

    a=a+2; 

      

    end  % Loop for different Load 

     

    clear i j a  
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Anova and Post-Hoc Analysis 
 

X= ResultEnergy(:); % The feature that need to be test  

[p,tbl,stats,terms] = anovan(X,{Load2 MotorCondition2},'model','full','varnames',{'Load', 

'MotorCondition'}); 

results = multcompare((stats),'CType','tukey-kramer','alpha',0.05,'Dimension',[1 2]); 

% ++++++++++++++++++++++ Input +++++++++++++++++++++++++ 

% We can additionally set the alpha level using the ‘alpha’ function followed  

% by our alphavalue (in this case, 0.05).  

% 'ctype' is then used to specify what type of test we want to use.  

% Additionally, we can substitute in: 

% 'hsd' or 'tukey-kramer' for the Tukey’s honest significant difference criterion. 

% 'lsd' for Tukey’s least significant difference procedure. 

% 'dun-sidak' which uses critical values from the t-distribution after an adjustment for 

% multiple comparisons proposed by Dunn and proved accurate by Sidak (hence, DunnSidak). 

% 'scheffe' which uses critical values from Scheffe’s S-procedure, derived from the Fdistribution. 

% ++++++++++++++++++++++  Output  +++++++++++++++++++++++++ 

%"The return value COMPARISON is a matrix with one row per comparison and six columns.  

%Columns 1-2 are the indices of the two samples being compared.  

%Columns 3-5 are a lower bound, estimate, and upper bound for their difference. 

%The fourth column shows the difference between the estimated group means.  

%The third and fifth columns show the lower and upper limits for 95% confidence intervals for the 

true mean difference.  

%Column 6 is the p-value for each individual comparison. 
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Time-Frequency Domain Analysis with Anova test 
 

load('Healthy.mat') 

load('Faulty.mat') 

load('Motherwavelet102.mat') 

load('MotorCondition1.mat') %for Anova 

load('Load1.mat') %for Anova 

load('ResultTable.mat') %for Anova 

load('Folder.mat') %for Anova 

load('MAT.mat') %for Anova 

  

  CD{1,1}={'Type'}; 

  CD{1,2}={'LevelDec.'}; 

  for g=1:20; 

      CD{1,g+2}={ResultTable{1,g}}; 

  end  

  clear g 

      

Level= input('Enter Number of Level>'); 

  

for motherorder = 1:102;  %Wavelet packet calculation based on different mother wavelet  

        a=1; %for matrix of feature 

       

for i=1:4;   % Loop for different Load 

 

        for j = 1:40; Loop for different sample 

  

        % open the Healthy file  

        file_name_H=Healthy{i,j}; 

        dataH = load(file_name_H); 

        AH = struct2cell(dataH); 

        BH= cell2mat(AH); 

        DH=BH(:,2); 

        

        % wavelet analysis for Healthy  

         

        [CH,LH]= wavedec(DH ,Level,Motherwavelet125{1,motherorder});  

        cDLevelH = detcoef(CH,LH,Level);    

        DLevelH = wrcoef('d',CH,LH,Motherwavelet125{1,motherorder},Level  

                  

        % ---------- Statistical Features calculation for Healthy ------------- % 

        % --------- based on reconstruct signal at detail of level ------------ % 

                 

        XH=DLevelH; 

        NH = length(XH);          % N:number of row in X 

        Entropyshannon = wentropy(XH,'shannon'); 
        Entropylogenergy = wentropy(XH,'log energy'); 
         

        ResultEntropyshannon (j,a) = Entropyshannon;  
        ResultEntropylogenergy (j,a) = Entropylogenergy;  
         
        clear file_name_H dataH AH BH DH 
        clear CH LH cDLevelH DLevelH  
        clear XH NH Entropyshannon Entropylogenergy 

  

        end % Loop for different sample 
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%---------------Faulty - 40 Sample----------% 

         

        a=a+1; 

         

        for j = 1:40; Loop for different sample 

  

        % open the file     

        file_name_F=Faulty{i,j}; 

        dataF = load(file_name_F); 

        AF = struct2cell(dataF); 

        BF= cell2mat(AF); 

        DF=BF(:,2); 

         

        % wavelet analysis 

               

        [CF,LF]= wavedec(DF ,Level,Motherwavelet125{1,motherorder});  

        cDLevelF = detcoef(CF,LF,Level);    

        DLevelF = wrcoef('d',CF,LF,Motherwavelet125{1,motherorder},Level);   

 

         

        % ---------- Statistical Features calculation for Faulty -------------- % 

        % --------- based on reconstruct signal at detail of level ------------ % 

         

        XF=DLevelF; 

        NF = length(XF);          % N:number of row in X 

        Entropyshannon = wentropy(XF,'shannon'); 
        Entropylogenergy = wentropy(XF,'log energy'); 

 

        ResultEntropyshannon (j,a) = Entropyshannon;  
        ResultEntropylogenergy (j,a) = Entropylogenergy; 

  

        clear file_name_F dataF AF BF DF 

        clear CF LF cDLevelF DLevelF  

        clear XF NF Entropyshannon Entropylogenergy 

  

        end % Loop for different sample 

                 

    a=a+1; 

end  % Loop for different Load 

     

  

    %%%%%%---------------Anova and Post-Hoc Test----------%%%%%% 

    for n=1:3; 

        file_name_A=ResultTable{1,n}; 

        save(file_name_A,file_name_A) 

        dataA = load(file_name_A); 

        DeleteSaveFile = strcat(Folder,file_name_A,MAT); 

        delete(DeleteSaveFile); 

        AA = struct2cell(dataA); 

        BA= cell2mat(AA); 

         

        k=1;                

        for i=1:2:8; 

            for j=1:40; 

                DA(k,:)=BA(j,i); 

                k=k+1; 

            end 

        end 

  

        for i=2:2:8; 
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             for j=1:40; 

                 DA(k,:)=BA(j,i); 

                 k=k+1; 

             end 

        end 

  

        [p,Atbl,stats,terms] = anovan(DA,{MotorCondition1 Load1},'model','full','varnames', 

{'MotorCondition','Load'},'display','off'); 

        PostHoc_Results = multcompare((stats),'CType','tukey-kramer','alpha',0.05,'Dimension',[1 2], 

'Display','off'); 

  

        p_value(1,1)=cell2mat(Atbl(2,7));   %anovan(MotorCondition) 

        p_value(2,1)=cell2mat(Atbl(3,7));   %anovan(Load) 

        p_value(3,1)=cell2mat(Atbl(4,7));   %anovan(Intraction) 

        p_value(4,1)=PostHoc_Results(1,6); 

        p_value(5,1)=PostHoc_Results(14,6); 

        p_value(6,1)=PostHoc_Results(23,6); 

        p_value(7,1)=PostHoc_Results(28,6); 

         

        if all(p_value < 0.05) 

            q(motherorder,n)=1; 

        else 

            q(motherorder,n)=0;   

        end 

         

        CD{motherorder+1,1}={Motherwavelet125{1,motherorder}}; 

        CD{motherorder+1,n+2}=q(motherorder,n); 

         

        clear i j p stats terms PostHoc_Results file_name_A DeleteSaveFile 

        clear dataA DA BA AA Atbl p_value  

              

    end 

      

    clear ResultEntropyshannon  ResultEntropylogenergy  

  

end  % Loop for different Mother wavelet 

clear k a Level q n 
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APPENDIX F 

Simulation Result in Time Domain Analysis
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APPENDIX G 

Simulation Result for Time Domain Analysis based on Envelope Signal 
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APPENDIX H 

The result of features evaluation in approximation of level 6 

using simulation data 

 

Mother 

Wavelet 

Features 
Mother 

Wavelet 

Features 

Shannon  

Entropy 

Log Energy 

Entropy 

Shannon  

Entropy 

Log Energy 

Entropy 

'dmey' - - 'sym5' - Y 

'haar' - - 'sym6' - Y 

'db1' - - 'sym7' - Y 

'db2' - - 'sym8' - Y 

'db3' - - 'sym9' - Y 

'db4' - Y 'sym10' - Y 

'db5' - Y 'sym11' - Y 

'db6' - Y 'sym12' - Y 

'db7' - Y 'sym13' - Y 

'db8' - Y 'sym14' - Y 

'db9' - Y 'sym15' - Y 

'db10' - Y 'sym16' - Y 

'db11' - Y 'sym17' - Y 

'db12' - Y 'sym18' - Y 

'db13' - Y 'sym19' - Y 

'db14' - Y 'sym20' - - 

'db15' - Y 'coif1' - - 

'db16' - Y 'coif2' - - 

'db17' - Y 'coif3' - Y 

'db18' - Y 'coif4' - Y 

'db19' - Y 'coif5' - Y 

'db20' - Y 'bior1.1' - - 

'db21' - Y 'bior1.3' - - 

'db22' - Y 'bior1.5' - - 

'db23' - Y 'bior2.2' - - 

'db24' - Y 'bior2.4' - - 

'db25' - Y 'bior2.6' - - 

'db26' - Y 'bior2.8' - - 

'db27' - Y 'bior3.1' - Y 

'db28' - Y 'bior3.3' - Y 

'db29' - Y 'bior3.5' - Y 

'db30' - - 'bior3.7' - Y 

'db31' - - 'bior3.9' - - 

'db32' - - 'bior4.4' - - 

'db33' - - 'bior5.5' - - 

'db34' - - 'bior6.8' - - 

'db35' - - 'rbio1.1' - - 

'db36' - - 'rbio1.3' - - 

'db37' - - 'rbio1.5' - - 

'db38' - - 'rbio2.2' - Y 

'db39' - - 'rbio2.4' - Y 

'db40' - - 'rbio2.6' - Y 

'db41' - - 'rbio2.8' - Y 

'db42' - - 'rbio3.1' - Y 

'db43' - - 'rbio3.3' - Y 

'db44' - - 'rbio3.5' - Y 

'db45' - - 'rbio3.7' - Y 

'sym1' - Y 'rbio3.9' - Y 

'sym2' - Y 'rbio4.4' - - 

'sym3' - Y 'rbio5.5' - - 

'sym4' - Y 'rbio6.8' - - 
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The result of features evaluation in Detail of level 7 

using simulation data 

 

Mother 

Wavelet 

Features 
Mother 

Wavelet 

Features 

Shannon  

Entropy 

Log Energy 

Entropy 

Shannon  

Entropy 

Log Energy 

Entropy 

'dmey' - Y 'sym5' - Y 

'haar' - - 'sym6' - Y 

'db1' - - 'sym7' - Y 

'db2' - - 'sym8' - Y 

'db3' - - 'sym9' - Y 

'db4' - - 'sym10' - Y 

'db5' - - 'sym11' - Y 

'db6' - - 'sym12' - Y 

'db7' - Y 'sym13' - Y 

'db8' - Y 'sym14' - Y 

'db9' - Y 'sym15' - Y 

'db10' - Y 'sym16' - Y 

'db11' - Y 'sym17' - - 

'db12' - Y 'sym18' - - 

'db13' - Y 'sym19' - - 

'db14' - Y 'sym20' - - 

'db15' - Y 'coif1' - Y 

'db16' - Y 'coif2' - Y 

'db17' - Y 'coif3' - Y 

'db18' - Y 'coif4' - Y 

'db19' - Y 'coif5' - Y 

'db20' - Y 'bior1.1' - - 

'db21' - Y 'bior1.3' - - 

'db22' - Y 'bior1.5' - - 

'db23' - Y 'bior2.2' - Y 

'db24' - Y 'bior2.4' - Y 

'db25' - Y 'bior2.6' - Y 

'db26' - Y 'bior2.8' - Y 

'db27' - Y 'bior3.1' - Y 

'db28' - Y 'bior3.3' - Y 

'db29' - Y 'bior3.5' - Y 

'db30' - Y 'bior3.7' - Y 

'db31' - Y 'bior3.9' - Y 

'db32' - Y 'bior4.4' - Y 

'db33' - - 'bior5.5' - Y 

'db34' - - 'bior6.8' - Y 

'db35' - - 'rbio1.1' - - 

'db36' - - 'rbio1.3' - - 

'db37' - - 'rbio1.5' - - 

'db38' - - 'rbio2.2' - Y 

'db39' - - 'rbio2.4' - Y 

'db40' - - 'rbio2.6' - Y 

'db41' - - 'rbio2.8' - Y 

'db42' - - 'rbio3.1' - Y 

'db43' - - 'rbio3.3' - Y 

'db44' - - 'rbio3.5' - Y 

'db45' - - 'rbio3.7' - Y 

'sym1' - Y 'rbio3.9' - Y 

'sym2' - Y 'rbio4.4' - Y 

'sym3' - Y 'rbio5.5' - Y 

'sym4' - Y 'rbio6.8' - Y 
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The result of features evaluation in approximation of level 7 

using simulation data 

 

Mother 

Wavelet 

Features 
Mother 

Wavelet 

Features 

Shannon  

Entropy 

Log Energy 

Entropy 

Shannon  

Entropy 

Log Energy 

Entropy 

'dmey' - Y 'sym5' - Y 

'haar' - - 'sym6' - Y 

'db1' - - 'sym7' - - 

'db2' - Y 'sym8' - - 

'db3' - Y 'sym9' - - 

'db4' - Y 'sym10' - - 

'db5' - Y 'sym11' - - 

'db6' - Y 'sym12' - - 

'db7' - Y 'sym13' - - 

'db8' - Y 'sym14' - - 

'db9' - - 'sym15' - - 

'db10' - - 'sym16' - - 

'db11' - - 'sym17' - - 

'db12' - - 'sym18' - - 

'db13' - - 'sym19' - - 

'db14' - - 'sym20' - - 

'db15' - - 'coif1' - - 

'db16' - - 'coif2' - - 

'db17' - - 'coif3' - - 

'db18' - - 'coif4' - - 

'db19' - - 'coif5' - - 

'db20' - - 'bior1.1' - - 

'db21' - - 'bior1.3' - - 

'db22' - - 'bior1.5' - - 

'db23' - - 'bior2.2' - - 

'db24' - - 'bior2.4' - - 

'db25' - - 'bior2.6' - - 

'db26' - - 'bior2.8' - - 

'db27' - - 'bior3.1' - Y 

'db28' - - 'bior3.3' - Y 

'db29' - - 'bior3.5' - Y 

'db30' - - 'bior3.7' - Y 

'db31' - - 'bior3.9' - Y 

'db32' - - 'bior4.4' - Y 

'db33' - - 'bior5.5' - Y 

'db34' - - 'bior6.8' - - 

'db35' - - 'rbio1.1' - Y 

'db36' - - 'rbio1.3' - Y 

'db37' - - 'rbio1.5' - Y 

'db38' - - 'rbio2.2' - Y 

'db39' - - 'rbio2.4' - Y 

'db40' - - 'rbio2.6' - Y 

'db41' - - 'rbio2.8' - Y 

'db42' - - 'rbio3.1' - - 

'db43' - - 'rbio3.3' - - 

'db44' - - 'rbio3.5' - - 

'db45' - - 'rbio3.7' - - 

'sym1' - - 'rbio3.9' - - 

'sym2' - - 'rbio4.4' - - 

'sym3' - Y 'rbio5.5' - - 

'sym4' - Y 'rbio6.8' - - 
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